Eutrophication in the context of "Point source pollution"

Play Trivia Questions online!

or

Skip to study material about Eutrophication in the context of "Point source pollution"

Ad spacer

⭐ Core Definition: Eutrophication

Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of organisms that may deplete the oxygen in the water; ie. the process of too many plants growing on the surface of a river, lake, etc., often because chemicals that are used to help crops grow have been carried there by rain. Eutrophication may occur naturally or as a result of human actions. Manmade, or cultural, eutrophication occurs when sewage, industrial wastewater, fertilizer runoff, and other nutrient sources are released into the environment. Such nutrient pollution usually causes algal blooms and bacterial growth, resulting in the depletion of dissolved oxygen in water and causing substantial environmental degradation. Many policies have been introduced to combat eutrophication, including the United Nations Development Program (UNDP)'s sustainability development goals.

Approaches for prevention and reversal of eutrophication include minimizing point source pollution from sewage and agriculture as well as other nonpoint pollution sources. Additionally, the introduction of bacteria and algae-inhibiting organisms such as shellfish and seaweed can also help reduce nitrogen pollution, which in turn controls the growth of cyanobacteria, the main source of harmful algae blooms.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Eutrophication in the context of Soil erosion

Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, and animals (including humans). In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolian) erosion, zoogenic erosion and anthropogenic erosion such as tillage erosion. Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil. The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks. Soil erosion could also cause sinkholes.

Human activities have increased by 10–50 times the rate at which erosion is occurring world-wide.Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes) ecological collapse, both because of loss of the nutrient-rich upper soil layers. In some cases, the eventual result is desertification. Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide.

↑ Return to Menu

Eutrophication in the context of Dead zone (ecology)

Dead zones are hypoxic (low-oxygen) areas in the world's oceans and large lakes. Hypoxia occurs when dissolved oxygen (DO) concentration falls to or below 2 mg of O2/liter. When a body of water experiences hypoxic conditions, aquatic flora and fauna begin to change behavior in order to reach sections of water with higher oxygen levels. Once DO declines below 0.5 mg O2/liter in a body of water, mass mortality occurs. With such a low concentration of DO, these bodies of water fail to support the aquatic life living there. Historically, many of these sites were naturally occurring. However, in the 1970s, oceanographers began noting increased instances and expanses of dead zones. These occur near inhabited coastlines, where aquatic life is most concentrated.

Coastal regions, such as the Baltic Sea, the northern Gulf of Mexico, and the Chesapeake Bay, as well as large enclosed water bodies like Lake Erie, have been affected by deoxygenation due to eutrophication. Excess nutrients are put into these systems by rivers, ultimately from urban and agricultural runoff and exacerbated by deforestation. These nutrients lead to high productivity that produces organic material that sinks to the bottom and is respired. The respiration of that organic material uses up the oxygen and causes hypoxia or anoxia.

↑ Return to Menu

Eutrophication in the context of Criticism of capitalism

Criticism of capitalism typically ranges from expressing disagreement with particular aspects or outcomes of capitalism to rejecting the principles of the capitalist system in its entirety. Criticism comes from various political and philosophical approaches, including anarchist, socialist, religious, and nationalist viewpoints. Some believe that capitalism can only be overcome through revolution while others believe that structural change can come slowly through political reforms. Some critics believe there are merits in capitalism and wish to balance it with some form of social control, typically through government regulation (e.g. the social market movement).

Prominent among critiques of capitalism are accusations that capitalism is inherently exploitative, alienating, unstable, unsustainable, and creates massive economic inequality, commodifies people, is anti-democratic, leads to an erosion of human rights and national sovereignty while it incentivises imperialist expansion and war, and that it benefits a small minority at the expense of the majority of the population. There are also criticisms from environmental scientists and activists, leftists, degrowthers and others, that it depletes resources, causes climate change, biodiversity loss, topsoil loss, eutrophication, and generates massive amounts of pollution and waste.

↑ Return to Menu

Eutrophication in the context of Nutrient pollution

Nutrient pollution is a form of water pollution caused by too many nutrients entering the water. It is a primary cause of eutrophication of surface waters (lakes, rivers and coastal waters), in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farms, waste from septic tanks and feedlots, and emissions from burning fuels. Raw sewage, which is rich in nutrients, also contributes to the issue when dumped in water bodies. Excess nitrogen causes environmental problems such as harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

Agricultural production relies heavily on the use of natural and synthetic fertilizers, which often contain high levels of nitrogen, phosphorus and potassium. When nitrogen and phosphorus are not fully used by the growing plants, they can be lost from the farm fields and negatively impact air and downstream water quality. These nutrients can end up in aquatic ecosystems and contribute to increased eutrophication.

↑ Return to Menu

Eutrophication in the context of Ocean deoxygenation

Ocean deoxygenation is the reduction of the oxygen content in different parts of the ocean due to human activities. There are two areas where this occurs. Firstly, it occurs in coastal zones where eutrophication has driven some quite rapid (in a few decades) declines in oxygen to very low levels. This type of ocean deoxygenation is also called dead zones. Secondly, ocean deoxygenation occurs also in the open ocean. In that part of the ocean, there is nowadays an ongoing reduction in oxygen levels. As a result, the naturally occurring low oxygen areas (so called oxygen minimum zones (OMZs)) are now expanding slowly. This expansion is happening as a consequence of human caused climate change. The resulting decrease in oxygen content of the oceans poses a threat to marine life, as well as to people who depend on marine life for nutrition or livelihood. A decrease in ocean oxygen levels affects how productive the ocean is, how nutrients and carbon move around, and how marine habitats function.

As the oceans become warmer this increases the loss of oxygen in the oceans. This is because the warmer temperatures increase ocean stratification. The reason for this lies in the multiple connections between density and solubility effects that result from warming. As a side effect, the availability of nutrients for marine life is reduced, therefore adding further stress to marine organisms.

↑ Return to Menu

Eutrophication in the context of Factory farming

Intensive animal farming, industrial livestock production, and macro-farms, also known as factory farming, is a type of intensive agriculture used by the meat and dairy industry to maximize animal production while minimizing costs. To achieve this, agribusinesses keep livestock such as cattle, poultry, and fish at high stocking densities, at large scale, and using modern machinery, biotechnology, and pharmaceutics. The main products are meat, milk and eggs for human consumption.

While intensive animal farming can produce large amounts of animal products at a low cost with reduced human labor, it is controversial as it raises several ethical concerns, including animal welfare issues (confinement, mutilations, stress-induced aggression, breeding complications), harm to the environment and wildlife (greenhouse gases, deforestation, eutrophication), increased use of cropland to produce animal feed, public health risks (zoonotic diseases, pandemic risks, antibiotic resistance), and worker exploitation, particularly of undocumented workers. The animal agriculture industry has been accused of actively supporting disinformation campaigns and preventing policies to address climate change.

↑ Return to Menu

Eutrophication in the context of Harmful algal bloom

A harmful algal bloom (HAB), or excessive algae growth, sometimes called a red tide in marine environments, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, water deoxygenation, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive.

It is sometimes unclear what causes specific HABs as their occurrence in some locations appears to be entirely natural, while in others they appear to be a result of human activities. In certain locations there are links to particular drivers like nutrients, but HABs have also been occurring since before humans started to affect the environment. HABs are induced by eutrophication, which is an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates, ammonia, and urea) and phosphate. The excess nutrients are emitted by agriculture, industrial pollution, excessive fertilizer use in urban/suburban areas, and associated urban runoff. Higher water temperature and low circulation also contribute.

↑ Return to Menu

Eutrophication in the context of Lentic system ecology

A lake ecosystem or lacustrine ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (non-living) physical and chemical interactions. Lake ecosystems are a prime example of lentic ecosystems (lentic refers to stationary or relatively still freshwater, from the Latin lentus, which means "sluggish"), which include ponds, lakes and wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two ecosystems are examples of freshwater ecosystems.Lentic systems are diverse, ranging from a small, temporary rainwater pool a few inches deep to Lake Baikal, which has a maximum depth of 1642 m. The general distinction between pools/ponds and lakes is vague, but Brown states that ponds and pools have their entire bottom surfaces exposed to light, while lakes do not. In addition, some lakes become seasonally stratified. Ponds and pools have two regions: the pelagic open water zone, and the benthic zone, which comprises the bottom and shore regions. Since lakes have deep bottom regions not exposed to light, these systems have an additional zone, the profundal. These three areas can have very different abiotic conditions and, hence, host species that are specifically adapted to live there.Two important subclasses of lakes are ponds, which typically are small lakes that intergrade with wetlands, and water reservoirs. Over long periods of time, lakes, or bays within them, may gradually become enriched by nutrients and slowly fill in with organic sediments, a process called succession. When humans use the drainage basin, the volumes of sediment entering the lake can accelerate this process. The addition of sediments and nutrients to a lake is known as eutrophication.

↑ Return to Menu