Esterification in the context of Glycerin


Esterification in the context of Glycerin

Esterification Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Esterification in the context of "Glycerin"


⭐ Core Definition: Esterification

In chemistry, an ester is a compound derived from an acid (either organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R). These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well (e.g. amides), but not according to the IUPAC.

Glycerides are fatty acid esters of glycerol; they are important in biology, being one of the main classes of lipids and comprising the bulk of animal fats and vegetable oils. Lactones are cyclic carboxylic esters; naturally occurring lactones are mainly 5- and 6-membered ring lactones. Lactones contribute to the aroma of fruits, butter, cheese, vegetables like celery and other foods.

↓ Menu
HINT:

In this Dossier

Esterification in the context of Synthetic resin

Synthetic resin is an industrially produced, typically viscous substance that converts into rigid polymers by the process of curing. They are formed by the reaction of dibasic organic acids and polyhydric alcohols.. In order to undergo curing, resins typically contain reactive groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

Synthetic resins are of several classes. Some are manufactured by esterification of organic compounds. Some are thermosetting plastics in which the term "resin" is loosely applied to the reactant(s), the product, or both. "Resin" may be applied to one or more monomers in a copolymer, the other being called a "hardener", as in epoxy resins. For thermosetting plastics that require only one monomer, the monomer compound is the "resin". For example, liquid methyl methacrylate is often called the "resin" or "casting resin" while in the liquid state, before it polymerizes and "sets". After setting, the resulting poly(methyl methacrylate) (PMMA) is often renamed "acrylic glass" or "acrylic". (Trade names include Plexiglas and Lucite).

View the full Wikipedia page for Synthetic resin
↑ Return to Menu

Esterification in the context of Glycerol

Glycerol (/ˈɡlɪsərɒl/) is an organic compound with chemical formula C3H5(OH)3. It has a three-carbon backbone and is a simple triol compound (an alcohol with three hydroxyl groups). It is a colorless, odorless, sweet-tasting, viscous liquid. Because of its three hydroxyl groups, glycerol is miscible with water and is hygroscopic in nature.

The glycerol backbone is found in lipids known as glycerides, where one or more of the hydroxyl groups are esterified with fatty acids. The most abundant of glycerides are triglycerides (found in animal fats and vegetable oils), it is where glycerol is most commonly found in nature. It is also widely used as a sweetener in the food industry and as a humectant in pharmaceutical formulations.

View the full Wikipedia page for Glycerol
↑ Return to Menu

Esterification in the context of Lactone

Lactones are cyclic carboxylic esters. They are derived from the corresponding hydroxycarboxylic acids by esterification. They can be saturated or unsaturated.

Lactones are formed by lactonization, the intramolecular esterification of the corresponding hydroxycarboxylic acids.

View the full Wikipedia page for Lactone
↑ Return to Menu

Esterification in the context of Lactide

Lactide is the lactone cyclic ester derived by multiple esterification between two (usually) or more molecules from lactic acid (2-hydroxypropionic acid) or other hydroxy carboxylic acid. They are designated as dilactides, trilactides, etc., according to the number of hydroxy acid residues. All lactides are colorless or white solids. The dilactide derived from lactic acid has the formula [CH(CH3)CO2]2. This lactide has attracted interest because it is derived from abundant renewable resources and is the precursor to a biodegradable plastic.

View the full Wikipedia page for Lactide
↑ Return to Menu

Esterification in the context of Cutan (polymer)

Cutan is one of two waxy biopolymers which occur in the cuticle of some plants. The other and better-known polymer is cutin. Cutan is believed to be a hydrocarbon polymer, whereas cutin is a polyester, but the structure and synthesis of cutan are not yet fully understood. Cutan is not present in as many plants as once thought; for instance it is absent in Ginkgo.

Cutan was first detected as a non-saponifiable component, resistant to de-esterification by alkaline hydrolysis, that increases in amount in cuticles of some species such as Clivia miniata as they reach maturity, apparently replacing the cutin secreted in the early stages of cuticle development. Evidence that cutan is a hydrocarbon polymer comes from the fact that its flash pyrolysis products are a characteristic homologous series of paired alkanes and alkenes, and through C-NMR analysis of present-day and fossil plants.

View the full Wikipedia page for Cutan (polymer)
↑ Return to Menu

Esterification in the context of Hydrotreated Vegetable Oil

Hydrotreated vegetable oil (HVO) is a biofuel made by the hydrocracking and hydrogenation of vegetable oil. Hydrocracking breaks big molecules into smaller ones using hydrogen while hydrogenation eliminates double bonds by adding hydrogen to the molecules. These methods can be used to create substitutes for gasoline, diesel, propane, kerosene and other chemical feedstock. Diesel fuel produced from these sources is sometimes referred to as green diesel or renewable diesel.

Diesel fuel created by hydrotreating is distinct from the biodiesel made through esterification.

View the full Wikipedia page for Hydrotreated Vegetable Oil
↑ Return to Menu

Esterification in the context of Amyl alcohol

Amyl alcohols are alcohols with the formula C5H11OH. Eight are known. A mixture of amyl alcohols (also called amyl alcohol) can be obtained from fusel alcohol. Amyl alcohol is used as a solvent and in esterification, by which is produced amyl acetate and other products. The name amyl alcohol without further specification applies to the normal (straight-chain) form, 1-pentanol.

Three of these alcohols, 2-methyl-1-butanol, 2-pentanol, and 3-methyl-2-butanol (methyl isopropyl carbinol), contain stereocenters, and are therefore chiral and optically active.

View the full Wikipedia page for Amyl alcohol
↑ Return to Menu

Esterification in the context of Lipogenesis

In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the endoplasmic reticulum membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in liver and adipose tissue. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.

View the full Wikipedia page for Lipogenesis
↑ Return to Menu

Esterification in the context of Glycerine

Glycerol (/ˈɡlɪsərɒl/) is a sugar alcohol with chemical formula C3H5(OH)3. It has three carbon atoms and as many hydroxyl groups. It is a colorless, odorless, sweet-tasting, viscous liquid at Standard Ambient Temperature and Pressure (SATP). Because of its three hydroxyl groups, glycerol is miscible with water and is hygroscopic in nature.

The glycerol backbone is found in lipids known as glycerides, where one or more of the hydroxyl groups are esterified with fatty acids. The most abundant of glycerides are triglycerides (found in animal fats and vegetable oils), it is where glycerol is most commonly found in nature. It is also widely used as a sweetener in the food industry and as a humectant in pharmaceutical formulations.

View the full Wikipedia page for Glycerine
↑ Return to Menu

Esterification in the context of Omega hydroxy acid

Omega hydroxy acids (ω-hydroxy acids) are a class of naturally occurring straight-chain aliphatic organic acids n carbon atoms long with a carboxyl group at position 1 (the starting point for the family of carboxylic acids), and a hydroxyl at terminal position n where n > 3. They are a subclass of hydroxycarboxylic acids. The C16 and C18 omega hydroxy acids 16-hydroxy palmitic acid and 18-hydroxy stearic acid are key monomers of cutin in the plant cuticle. The polymer cutin is formed by interesterification of omega hydroxy acids and derivatives of them that are substituted in mid-chain, such as 10,16-dihydroxy palmitic acid. Only the epidermal cells of plants synthesize cutin.

Omega hydroxy fatty acids also occur in animals. Cytochrome P450 (CYP450) microsome ω-hydroxylases such as CYP4A11, CYP4A22, CYP4F2, and CYP4F3 in humans, Cyp4a10 and Cyp4a12 in mice, and Cyp4a1, Cyp4a2, Cyp4a3, and Cyp4a8 in rats metabolize arachidonic acid and many arachidonic acid metabolites to their corresponding omega hydroxyl products. This metabolism of arachidonic acid produces 20-hydroxyarachidonic acid (i.e. 20-hydroxyeicosatetraeonic acid or 20-HETE), a bioactive product involved in various physiological and pathological processes; and this metabolism of certain bioactive arachidonic acid metabolites such as leukotriene B4 and 5-hydroxyicosatetraenoic acid produces 20-hydroxylated products which are 100- to 1,000-fold weaker than, and therefore represents the inactivation of, their respective precursors.

View the full Wikipedia page for Omega hydroxy acid
↑ Return to Menu

Esterification in the context of Polyester resin

Synthetic resin is an industrially produced, typically viscous substance that converts into rigid polymers by the process of curing. They are formed by the reaction of dibasic organic acids and polyhydric alcohols. In order to undergo curing, resins typically contain reactive groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

Synthetic resins are of several classes. Some are manufactured by esterification of organic compounds. Some are thermosetting plastics in which the term "resin" is loosely applied to the reactant(s), the product, or both. "Resin" may be applied to one or more monomers in a copolymer, the other being called a "hardener", as in epoxy resins. For thermosetting plastics that require only one monomer, the monomer compound is the "resin". For example, liquid methyl methacrylate is often called the "resin" or "casting resin" while in the liquid state, before it polymerizes and "sets". After setting, the resulting poly(methyl methacrylate) (PMMA) is often renamed "acrylic glass" or "acrylic". (Trade names include Plexiglas and Lucite).

View the full Wikipedia page for Polyester resin
↑ Return to Menu

Esterification in the context of Acid catalysis

In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions. In these reactions, the conjugate acid of the carbonyl group is a better electrophile than the neutral carbonyl group itself. Depending on the chemical species that act as the acid or base, catalytic mechanisms can be classified as either specific catalysis and general catalysis. Many enzymes operate by general catalysis.

View the full Wikipedia page for Acid catalysis
↑ Return to Menu

Esterification in the context of Thioester

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R'. They are analogous to carboxylate esters (R−C(=O)−O−R') with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid (R−C(=O)−O−H) with a thiol (R'−S−H). In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

View the full Wikipedia page for Thioester
↑ Return to Menu