Equation of state in the context of "Ideal gas"

Play Trivia Questions online!

or

Skip to study material about Equation of state in the context of "Ideal gas"

Ad spacer

⭐ Core Definition: Equation of state

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars. Though there are many equations of state, none accurately predicts properties of substances under all conditions. The quest for a universal equation of state has spanned three centuries.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Equation of state in the context of Ideal gas

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

Under various conditions of temperature and pressure, many real gases behave qualitatively like an ideal gas where the gas molecules (or atoms for monatomic gas) play the role of the ideal particles. Noble gases and mixtures such as air, have a considerable parameter range around standard temperature and pressure. Generally, a gas behaves more like an ideal gas at higher temperature and lower pressure, as the potential energy due to intermolecular forces becomes less significant compared with the particles' kinetic energy, and the size of the molecules becomes less significant compared to the empty space between them. One mole of an ideal gas has a volume of 22.71095464... L (exact value based on 2019 revision of the SI) at standard temperature and pressure (a temperature of 273.15 K and an absolute pressure of exactly 10 Pa).

↓ Explore More Topics
In this Dossier

Equation of state in the context of Equation of state (cosmology)

In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density : It is closely related to the thermodynamic equation of state and ideal gas law.

↑ Return to Menu

Equation of state in the context of Ideal gas law

The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:

where , and are the pressure, volume and temperature respectively; is the amount of substance; and is the ideal gas constant.It can also be derived from the microscopic kinetic theory, as was achieved (independently) by August Krönig in 1856 and Rudolf Clausius in 1857.

↑ Return to Menu

Equation of state in the context of National Ignition Facility

The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research facility, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition with high energy gain. It achieved the first instance of scientific breakeven controlled fusion in an experiment on December 5, 2022, with an energy gain factor of 1.5. It supports nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear explosions.

NIF is the largest and most powerful ICF device built to date. The basic ICF concept is to squeeze a small amount of fuel to reach the pressure and temperature necessary for fusion. NIF hosts the world's most energetic laser, which indirectly heats the outer layer of a small sphere. The energy is so intense that it causes the sphere to implode, squeezing the fuel inside. The implosion reaches a peak speed of 350 km/s (0.35 mm/ns), raising the fuel density from about that of water to about 100 times that of lead. The delivery of energy and the adiabatic process during implosion raises the temperature of the fuel to hundreds of millions of degrees. At these temperatures, fusion processes occur in the tiny interval before the fuel explodes outward.

↑ Return to Menu

Equation of state in the context of Navier–Stokes equations

The Navier–Stokes equations (/nævˈj ˈstks/ nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Sir George Gabriel Stokes, Bt. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

The Navier–Stokes equations mathematically express momentum balance for Newtonian fluids and make use of conservation of mass. They are sometimes accompanied by an equation of state relating pressure, temperature and density. They arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g. they are never completely integrable).

↑ Return to Menu

Equation of state in the context of Helmholtz free energy

In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

In contrast, the Gibbs free energy or free enthalpy is most commonly used as a measure of thermodynamic potential (especially in chemistry) when it is convenient for applications that occur at constant pressure. For example, in explosives research Helmholtz free energy is often used, since explosive reactions by their nature induce pressure changes. It is also frequently used to define fundamental equations of state of pure substances.

↑ Return to Menu

Equation of state in the context of Johannes Diderik van der Waals

Johannes Diderik van der Waals (Dutch: [joːˈɦɑnəz ˈdidərɪk fɑn dər ˈʋaːls] ; 23 November 1837 – 8 March 1923) was a Dutch theoretical physicist who received the Nobel Prize in Physics in 1910 "for his work on the equation of state for gases and liquids". Van der Waals started his career as a schoolteacher. He became the first physics professor of the University of Amsterdam when its status was upgraded to Municipal University in 1877.

His name is primarily associated with the van der Waals equation, an equation of state that describes the behavior of gases and their condensation to the liquid phase. His name is also associated with van der Waals forces (forces between stable molecules), with van der Waals molecules (small molecular clusters bound by van der Waals forces), and with the van der Waals radius (size of molecules). James Clerk Maxwell once said that, "there can be no doubt that the name of Van der Waals will soon be among the foremost in molecular science."

↑ Return to Menu