Engineering physics in the context of Quality of experience


Engineering physics in the context of Quality of experience

Engineering physics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Engineering physics in the context of "Quality of experience"


⭐ Core Definition: Engineering physics

Engineering physics (EP), sometimes engineering science, is the field of study combining pure science disciplines (such as physics, mathematics, chemistry) and engineering disciplines (computer, nuclear, electrical, aerospace, medical, materials, mechanical, etc.).

In many languages, the term technical physics is also used.It has been used since 1861, after being introduced by the German physics teacher J. Frick [de] in his publications.

↓ Menu
HINT:

👉 Engineering physics in the context of Quality of experience

Quality of experience (QoE) is a measure of the delight or annoyance of a customer's experiences with a service (e.g., web browsing, phone call, TV broadcast). QoE focuses on the entire service experience; it is a holistic concept, similar to the field of user experience, but with its roots in telecommunication. QoE is an emerging multidisciplinary field based on social psychology, cognitive science, economics, and engineering science, focused on understanding overall human quality requirements.

↓ Explore More Topics
In this Dossier

Engineering physics in the context of Physicist

A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. They work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of natural phenomena and the development and analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena.

Physicists can apply their knowledge towards solving practical problems or to developing new technologies (also known as applied physics or engineering physics).

View the full Wikipedia page for Physicist
↑ Return to Menu

Engineering physics in the context of Mechanical engineering


Mechanical engineering is the study of physical machines and mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

Mechanical engineering requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, design, structural analysis, and electricity. In addition to these core principles, mechanical engineers use tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE), and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, motor vehicles, aircraft, watercraft, robotics, medical devices, weapons, and others.

View the full Wikipedia page for Mechanical engineering
↑ Return to Menu

Engineering physics in the context of Ray tracing (physics)

In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis.

Historically, ray tracing involved analytic solutions to the ray's trajectories. In modern applied physics and engineering physics, the term also encompasses numerical solutions to the Eikonal equation. For example, ray-marching involves repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.

View the full Wikipedia page for Ray tracing (physics)
↑ Return to Menu

Engineering physics in the context of Engineering mathematics

Engineering Mathematics is a branch of applied mathematics, concerning mathematical methods and techniques that are typically used in engineering and industry. Along with fields like engineering physics and engineering geology, both of which may belong in the wider category engineering science, engineering mathematics is an interdisciplinary subject motivated by engineers' needs both for practical, theoretical and other considerations outside their specialization, and to deal with constraints to be effective in their work.

View the full Wikipedia page for Engineering mathematics
↑ Return to Menu

Engineering physics in the context of Paul Scherrer Institute

The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the ETH Domain of the Swiss Confederation. PSI employs around 3000 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI's research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2,500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1,900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

View the full Wikipedia page for Paul Scherrer Institute
↑ Return to Menu