Energy demand in the context of "Energy economics"

Play Trivia Questions online!

or

Skip to study material about Energy demand in the context of "Energy economics"

Ad spacer

⭐ Core Definition: Energy demand

World energy supply and consumption refers to the global supply of energy resources and its consumption. The system of global energy supply consists of the energy development, refinement, and trade of energy. Energy supplies may exist in various forms such as raw resources or more processed and refined forms of energy. The raw energy resources include for example coal, unprocessed oil and gas, uranium. In comparison, the refined forms of energy include for example refined oil that becomes fuel and electricity. Energy resources may be used in various different ways, depending on the specific resource (e.g. coal), and intended end use (industrial, residential, etc.). Energy production and consumption play a significant role in the global economy. It is needed in industry and global transportation. The total energy supply chain, from production to final consumption, involves many activities that cause a loss of useful energy.

Total energy consumption tends to increase by about 1–2% per year. As of 2022, energy consumption is still about 80% from fossil fuels. More recently, renewable energy has been growing rapidly, averaging about 20% increase per year in the 2010s.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Energy demand in the context of Energy economics

Energy economics is a broad scientific subject area which includes topics related to supply and use of energy in societies. Considering the cost of energy services and associated value gives economic meaning to the efficiency at which energy can be produced. Energy services can be defined as functions that generate and provide energy to the “desired end services or states”. The efficiency of energy services is dependent on the engineered technology used to produce and supply energy. The goal is to minimise energy input required (e.g. kWh, mJ, see Units of Energy) to produce the energy service, such as lighting (lumens), heating (temperature) and fuel (natural gas). The main sectors considered in energy economics are transportation and building, although it is relevant to a broad scale of human activities, including households and businesses at a microeconomic level and resource management and environmental impacts at a macroeconomic level.

Interdisciplinary scientist Vaclav Smil has asserted that "every economic activity is fundamentally nothing but a conversion of one kind of energy to another, and monies are just a convenient (and often rather unrepresentative) proxy for valuing the energy flows."

↓ Explore More Topics
In this Dossier

Energy demand in the context of Energy crisis

An energy crisis or energy shortage is any significant bottleneck in the supply of energy resources to an economy. In literature, it often refers to one of the energy sources used at a certain time and place, in particular, those that supply national electricity grids or those used as fuel in industrial development. Population growth has led to a surge in the global demand for energy in recent years. In the 2000s, this new demand – together with Middle East tension, the falling value of the US dollar, dwindling oil reserves, concerns over peak oil, and oil price speculation – triggered the 2000s energy crisis, which saw the price of oil reach an all-time high of $147.30 per barrel ($926/m) in 2008.

Most energy crises have been caused by localized shortages, wars and market manipulation. However, the recent historical energy crises listed below were not caused by such factors.

↑ Return to Menu

Energy demand in the context of Energy demand management

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods including inducing behavioral changes though education and financial incentives.

Usually, the goal of demand-side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the grid congestion periods as well as the need for investments in networks and/or power plants for meeting peak demands. An example is the use of energy storage units to store energy during off-peak hours and discharge them during peak hours.

↑ Return to Menu