Enceladus in the context of "Voyager program"

Play Trivia Questions online!

or

Skip to study material about Enceladus in the context of "Voyager program"

Ad spacer

⭐ Core Definition: Enceladus

Enceladus is the sixth-largest moon of Saturn and the 18th largest in the Solar System. It is about 500 kilometres (310 miles) in diameter, about a tenth of that of Saturn's largest moon, Titan. It is covered by clean, freshly deposited snow hundreds of meters thick, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C (75.1 K; −324.4 °F), far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

Enceladus was discovered on August 28, 1789, by William Herschel, but little was known about it until the two Voyager spacecrafts, Voyager 1 and Voyager 2, flew by Saturn in 1980 and 1981. In 2005, the spacecraft Cassini started multiple close flybys of Enceladus, revealing its surface and environment in greater detail. In particular, Cassini discovered water-rich plumes venting from the south polar region. Cryovolcanoes near the south pole shoot geyser-like jets of water vapour, molecular hydrogen, other volatiles, and solid material, including sodium chloride crystals and ice particles, into space, totalling about 200 kilograms (440 pounds) per second. More than 100 geysers have been identified. Some of the water vapour falls back as snow, now several hundred metres thick; the rest escapes and supplies most of the material making up Saturn's E ring. According to NASA scientists, the plumes are similar in composition to comets. In 2014, NASA reported that Cassini had found evidence for a large south polar subsurface ocean of liquid water with a thickness of around 10 km (6 mi). The existence of Enceladus's subsurface ocean has since been mathematically modelled and replicated.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Enceladus in the context of Hydrothermal vent

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Hydrothermal vents exist because the Earth is both geologically active and has large amounts of water on its surface and within its crust. Under the sea, they may form features called black smokers or white smokers, which deliver a wide range of elements to the world's oceans, thus contributing to global marine biogeochemistry. Relative to the majority of the deep sea, the areas around hydrothermal vents are biologically more productive, often hosting complex communities fueled by the chemicals dissolved in the vent fluids. Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter's moon Europa and Saturn's moon Enceladus, and it is speculated that ancient hydrothermal vents once existed on Mars.

↑ Return to Menu

Enceladus in the context of Ocean world

An ocean world, ocean planet or water world is a type of planet or natural satellite that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava (the case of Io), ammonia (in a eutectic mixture with water, as is likely the case of Titan's inner ocean) or hydrocarbons (like on Titan's surface, which could be the most abundant kind of exosea). The study of extraterrestrial oceans is referred to as planetary oceanography.

Earth is the only astronomical object known to presently have bodies of liquid water on its surface, although subsurface oceans are suspected to exist on Jupiter's moons Europa and Ganymede and Saturn's moons Enceladus and Titan. Several exoplanets have been found with the right conditions to support liquid water. There are also considerable amounts of subsurface water found on Earth, mostly in the form of aquifers. For exoplanets, current technology cannot directly observe liquid surface water, so atmospheric water vapor may be used as a proxy. The characteristics of ocean worlds provide clues to their history and the formation and evolution of the Solar System as a whole. Of additional interest is their potential to originate and host life.

↑ Return to Menu

Enceladus in the context of Subsurface ocean

Planetary oceanography, also called astro-oceanography or exo-oceanography, is the study of oceans on planets and moons other than Earth. This field developed after the discovery of sub-surface oceans in Saturn's moon Titan and Jupiter's moon Europa during the Voyager missions. The Cassini mission observed surface lakes of liquid methane on Titan, and directly sampled a plume of sub-surface ocean water from Enceladus.

Early in their geologic histories, Mars and Venus are theorized to have had large water oceans. The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, and a runaway greenhouse effect may have boiled away the global ocean of Venus. Compounds such as salts and ammonia, when dissolved in water, will lower water's freezing point, so that water might exist in large quantities in extraterrestrial environments as brine, or convecting ice. Oceans are thought to exist beneath the surfaces of many dwarf planets and natural satellites; notably, the ocean of the moon Europa is estimated to have over twice the water volume of Earth's.

↑ Return to Menu

Enceladus in the context of Moons of Saturn

There are 274 known moons of the planet Saturn, the most of any planet in the Solar System. Saturn's moons are diverse in size, ranging from tiny moonlets to Titan, which is larger than the planet Mercury. Three of these moons possess particularly notable features: Titan, Saturn's largest moon (and the second largest moon in the Solar System), has a nitrogen-rich, Earth-like atmosphere and a landscape featuring river networks and hydrocarbon lakes, Enceladus emits jets of ice from its south-polar region and is covered in a deep layer of snow, and Iapetus has contrasting black and white hemispheres as well as an extensive ridge of equatorial mountains which are among the tallest in the solar system.

Twenty-four of the known moons are regular satellites; they have prograde orbits not greatly inclined to Saturn's equatorial plane (except Iapetus, which has a prograde but highly inclined orbit). They include the seven major satellites, four small moons that exist in a trojan orbit with larger moons, and five that act as shepherd moons, of which two are mutually co-orbital. At least two tiny moons orbit inside of Saturn's B and G rings. The relatively large Hyperion is locked in an orbital resonance with Titan. The remaining regular moons orbit near the outer edges of the dense A Ring and the narrow F Ring, and between the major moons Mimas and Enceladus. The regular satellites are traditionally named after Titans and Titanesses or other figures associated with the mythological Saturn.

↑ Return to Menu

Enceladus in the context of Volcanism on Io

Io, a moon of Jupiter, has a substantial presence of volcanoes, volcanic pits and lava flows on its surface. Volcanic activity on the moon was first discovered in 1979 by Linda Morabito, an imaging scientist working on Voyager 1. Observations of Io by passing spacecraft and Earth-based astronomers have revealed more than 150 active volcanoes. As of 2024, up to 400 such volcanoes are predicted to exist based on these observations. Io's volcanism makes the satellite one of only five known currently volcanically or cryovolcanically active worlds in the Solar System (the others being Earth, Venus, Saturn's moon Enceladus, and Neptune's moon Triton.)

First predicted shortly before the Voyager 1 flyby, the heat source for Io's volcanism comes from tidal heating produced by its forced orbital eccentricity. This differs from Earth's internal heating, which is derived primarily from radioactive isotope decay and primordial heat of accretion. Io's eccentric orbit leads to a slight difference in Jupiter's gravitational pull on the satellite between its closest and farthest points on its orbit, causing a varying tidal bulge. This variation in the shape of Io causes frictional heating in its interior. Without this tidal heating, Io might have been similar to the Moon, a world of similar size and mass, geologically dead and covered with numerous impact craters.

↑ Return to Menu