Elementary particle in the context of Molecule


Elementary particle in the context of Molecule

Elementary particle Study page number 1 of 7

Play TriviaQuestions Online!

or

Skip to study material about Elementary particle in the context of "Molecule"


⭐ Core Definition: Elementary particle

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. These 61 elementary particles include electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name atom comes from the Ancient Greek word ἄτομος (atomos) which means indivisible or uncuttable. Despite the theories about atoms that had existed for thousands of years, the factual existence of atoms remained controversial until 1905. In that year, Albert Einstein published his paper on Brownian motion, putting to rest theories that had regarded molecules as mathematical illusions. Einstein subsequently identified matter as ultimately composed of various concentrations of energy.

↓ Menu
HINT:

In this Dossier

Elementary particle in the context of Physics

Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. It is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist.

Physics is one of the oldest academic disciplines. Over much of the past two millennia, physics, chemistry, biology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy.

View the full Wikipedia page for Physics
↑ Return to Menu

Elementary particle in the context of Particle physics

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.

The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

View the full Wikipedia page for Particle physics
↑ Return to Menu

Elementary particle in the context of Matter

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles. In everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

Usually atoms can be imagined as a nucleus of protons and neutrons, and a surrounding "cloud" of orbiting electrons which "take up space". However, this is only somewhat correct because subatomic particles and their properties are governed by their quantum nature, which means they do not act as everyday objects appear to act – they can act like waves as well as particles, and they do not have well-defined sizes or positions. In the Standard Model of particle physics, matter is not a fundamental concept because the elementary constituents of atoms are quantum entities which do not have an inherent "size" or "volume" in any everyday sense of the word. Due to the exclusion principle and other fundamental interactions, some "point particles" known as fermions (quarks, leptons), and many composites and atoms, are effectively forced to keep a distance from other particles under everyday conditions; this creates the property of matter which appears to us as matter taking up space.

View the full Wikipedia page for Matter
↑ Return to Menu

Elementary particle in the context of Magnetism

Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.

The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt, nickel, and their alloys.

View the full Wikipedia page for Magnetism
↑ Return to Menu

Elementary particle in the context of Subatomic particle

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, like a proton or a neutron, composed of three quarks; or a meson, composed of two quarks), or an elementary particle, which is not composed of other particles (for example, quarks; or electrons, muons, and tau particles, which are called leptons). Particle physics and nuclear physics study these particles and how they interact. Most force-carrying particles like photons or gluons are called bosons and, although they have quanta of energy, do not have rest mass or discrete diameters (other than pure energy wavelength) and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions. The W and Z bosons, however, are an exception to this rule and have relatively large rest masses at approximately 80 GeV/c and 90 GeV/c respectively.

View the full Wikipedia page for Subatomic particle
↑ Return to Menu

Elementary particle in the context of Fundamental interaction

In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: gravity, electromagnetism, weak interaction, and strong interaction. The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at subatomic scales and govern nuclear interactions inside atoms. Some scientists hypothesize that a fifth force might exist, but these hypotheses remain speculative.

Each of the known fundamental interactions can be described mathematically as a field. The gravitational interaction is attributed to the curvature of spacetime, described by Einstein's general theory of relativity. The other three are discrete quantum fields, and their interactions are mediated by elementary particles described by the Standard Model of particle physics.

View the full Wikipedia page for Fundamental interaction
↑ Return to Menu

Elementary particle in the context of Isotropy

In physics and geometry, isotropy (from Ancient Greek ἴσος (ísos) 'equal' and τρόπος (trópos) 'turn, way') is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix a- or an-, hence anisotropy. Anisotropy is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented.

View the full Wikipedia page for Isotropy
↑ Return to Menu

Elementary particle in the context of Particle horizon

The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light (approximately 13.8 billion light-years), but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

View the full Wikipedia page for Particle horizon
↑ Return to Menu

Elementary particle in the context of Theory of relativity

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

View the full Wikipedia page for Theory of relativity
↑ Return to Menu

Elementary particle in the context of Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physical phenomena unexplained and so falls short of being a complete theory of fundamental interactions. For example, it does not fully explain why there is more matter than anti-matter, incorporate the full theory of gravitation as described by general relativity, or account for the universe's accelerating expansion as possibly described by dark energy. The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses.

View the full Wikipedia page for Standard Model
↑ Return to Menu

Elementary particle in the context of Fermion

In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin 3/2, etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions.

View the full Wikipedia page for Fermion
↑ Return to Menu

Elementary particle in the context of Boson

In particle physics, a boson (/ˈbzɒn/ /ˈbsɒn/) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer spin (1/2, 3/2, 5/2, ...). Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name boson to commemorate the contribution of Satyendra Nath Bose, an Indian physicist.

Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents.

View the full Wikipedia page for Boson
↑ Return to Menu

Elementary particle in the context of Generation (particle physics)

In particle physics, a generation or family is a division of the elementary particles. Between generations, particles differ by their flavour quantum number and mass, but their electric and strong interactions are identical.

There are three generations according to the Standard Model of particle physics. Each generation contains two types of leptons and two types of quarks. The two leptons may be classified into one with electric charge −1 (electron-like) and neutral (neutrino); the two quarks may be classified into one with charge −13 (down-type) and one with charge +23 (up-type). The basic features of quark–lepton generation or families, such as their masses and mixings etc., can be described by some of the proposed family symmetries.

View the full Wikipedia page for Generation (particle physics)
↑ Return to Menu

Elementary particle in the context of Up quark

The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2+0.5
−0.4
 MeV/c
. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called antiup quark or simply antiup), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The up quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968.

View the full Wikipedia page for Up quark
↑ Return to Menu

Elementary particle in the context of Down quark

The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with.

The down quark is part of the first generation of matter, has an electric charge of −1/3 e and a bare mass of 4.7+0.5
−0.3
 MeV/c
. Like all quarks, the down quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called antidown quark or simply antidown), which differs from it only in that some of its properties have equal magnitude but opposite sign.

View the full Wikipedia page for Down quark
↑ Return to Menu

Elementary particle in the context of Electron

The electron (e
, or β
in nuclear reactions) is a subatomic particle whose electric charge is negative one elementary charge. It is an elementary particle that comprises the ordinary matter that makes up the universe, along with up and down quarks.

Electrons are extremely lightweight particles. In atoms, an electron's matter wave occupies atomic orbitals around a positively charged atomic nucleus. The configuration and energy levels of an atom's electrons determine the atom's chemical properties. Electrons are bound to the nucleus to different degrees. The outermost or valence electrons are the least tightly bound and are responsible for the formation of chemical bonds between atoms to create molecules and crystals. These valence electrons also facilitate all types of chemical reactions by being transferred or shared between atoms. The inner electron shells make up the atomic core.

View the full Wikipedia page for Electron
↑ Return to Menu

Elementary particle in the context of Electron neutrino

The electron neutrino (ν
e
) is an elementary particle which has zero electric charge and a spin of 12. Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment).

View the full Wikipedia page for Electron neutrino
↑ Return to Menu

Elementary particle in the context of Neutrino

A neutrino (/njˈtrn/ new-TREE-noh; denoted by the Greek letter ν) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles).The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction.Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect.

Weak interactions create neutrinos in one of three leptonic flavors:

View the full Wikipedia page for Neutrino
↑ Return to Menu