Elementary charge in the context of Two-electron atom


Elementary charge in the context of Two-electron atom

Elementary charge Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Elementary charge in the context of "Two-electron atom"


⭐ Core Definition: Elementary charge

The elementary charge, usually denoted by e}, is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e.

In SI units, the coulomb is defined such that the value of the elementary charge is exactly e = 1.602176634×10 C. Since the 2019 revision of the SI, the seven SI base units are defined in terms of seven fundamental physical constants, of which the elementary charge is one.

↓ Menu
HINT:

In this Dossier

Elementary charge in the context of Electric charge

Electric charge (symbol q, sometimes Q) is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

In an isolated system, the total charge stays the same - the amount of positive charge minus the amount of negative charge does not change over time. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms. If there are more electrons than protons in a piece of matter, it will have a negative charge, if there are fewer it will have a positive charge, and if there are equal numbers it will be neutral. Charge is quantized: it comes in integer multiples of individual small units called the elementary charge, e, about 1.602×10 C, which is the smallest charge that can exist freely. Particles called quarks have smaller charges, multiples of 1/3e, but they are found only combined in particles that have a charge that is an integer multiple of e. In the Standard Model, charge is an absolutely conserved quantum number. The proton has a charge of +e, and the electron has a charge of −e.

View the full Wikipedia page for Electric charge
↑ Return to Menu

Elementary charge in the context of Physical constant

A physical constant, sometimes called a fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement.

There are many physical constants in science, some of the most widely recognized being the speed of light in vacuum c, the gravitational constant G, the Planck constant h, the electric constant ε0, and the elementary charge e. Physical constants can take many dimensional forms: the speed of light has dimension of length divided by time (TL), while the proton-to-electron mass ratio is dimensionless.

View the full Wikipedia page for Physical constant
↑ Return to Menu

Elementary charge in the context of Protons

A proton is a stable subatomic particle, symbol p, H, or H with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one dalton, are jointly referred to as nucleons (particles present in atomic nuclei).

One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element.

View the full Wikipedia page for Protons
↑ Return to Menu

Elementary charge in the context of Up quark

The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2+0.5
−0.4
 MeV/c
. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called antiup quark or simply antiup), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The up quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968.

View the full Wikipedia page for Up quark
↑ Return to Menu

Elementary charge in the context of Down quark

The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with.

The down quark is part of the first generation of matter, has an electric charge of −1/3 e and a bare mass of 4.7+0.5
−0.3
 MeV/c
. Like all quarks, the down quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called antidown quark or simply antidown), which differs from it only in that some of its properties have equal magnitude but opposite sign.

View the full Wikipedia page for Down quark
↑ Return to Menu

Elementary charge in the context of Electron

The electron (e
, or β
in nuclear reactions) is a subatomic particle whose electric charge is negative one elementary charge. It is an elementary particle that comprises the ordinary matter that makes up the universe, along with up and down quarks.

Electrons are extremely lightweight particles. In atoms, an electron's matter wave occupies atomic orbitals around a positively charged atomic nucleus. The configuration and energy levels of an atom's electrons determine the atom's chemical properties. Electrons are bound to the nucleus to different degrees. The outermost or valence electrons are the least tightly bound and are responsible for the formation of chemical bonds between atoms to create molecules and crystals. These valence electrons also facilitate all types of chemical reactions by being transferred or shared between atoms. The inner electron shells make up the atomic core.

View the full Wikipedia page for Electron
↑ Return to Menu

Elementary charge in the context of Quark

A quark (/ˈkwɔːrk, ˈkwɑːrk/ ) is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as fundamental forces (electromagnetism, gravitation, strong interaction, and weak interaction), as well as the only known particles whose electric charges are not integer multiples of the elementary charge.

View the full Wikipedia page for Quark
↑ Return to Menu

Elementary charge in the context of Positron

The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2 (the same as the electron), and approximately the same mass as an electron. It is the antiparticle (antimatter counterpart) of the electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons.

Positrons can be created by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon which is interacting with an atom in a material.

View the full Wikipedia page for Positron
↑ Return to Menu

Elementary charge in the context of Muon

A muon (/ˈm(j).ɒn/ M(Y)OO-on; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2 ħ, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles.

The muon is an unstable subatomic particle with a mean lifetime of 2.2 μs, much longer than many other subatomic particles. As with the decay of the free neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron of the same charge as the muon and two types of neutrinos.

View the full Wikipedia page for Muon
↑ Return to Menu

Elementary charge in the context of W and Z bosons

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are W
, W
, and Z
. The W
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The Z
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The W
 bosons have a magnetic moment, but the Z
has none. All three of these particles are very short-lived, with a half-life of about 3×10 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

The W bosons are named after the weak force. The physicist Steven Weinberg named the additional particle the "Z particle", and later gave the explanation that it was the last additional particle needed by the model. The W bosons had already been named, and the Z bosons were named for having zero electric charge.

View the full Wikipedia page for W and Z bosons
↑ Return to Menu

Elementary charge in the context of Top quark

The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs field. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and experiments at Fermilab.

Like all other quarks, the top quark is a fermion with spin-1/2 and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of + 2 /3 e. It has a mass of 172.76±0.3 GeV/c, which is close to the rhenium atom mass (more precisely, the average of its isotopes). The antiparticle of the top quark is the top antiquark (symbol: t, sometimes called antitop quark or simply antitop), which differs from it only in that some of its properties have equal magnitude but opposite sign.

View the full Wikipedia page for Top quark
↑ Return to Menu

Elementary charge in the context of Eightfold Way (physics)

In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. The American physicist Murray Gell-Mann and the Israeli physicist Yuval Ne'eman independently and simultaneously proposed the idea in 1961.The name comes from Gell-Mann's (1961) paper, "The Eightfold Way: A theory of strong interaction symmetry." It is an allusion to the Noble Eightfold Path of Buddhism and was meant to be a joke.

View the full Wikipedia page for Eightfold Way (physics)
↑ Return to Menu

Elementary charge in the context of Ampere

The ampere (/ˈæmpɛər/ AM-pair, US: /ˈæmpɪər/ AM-peer; symbol: A), often shortened to amp, is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.

As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602176634×10 C, which means an ampere is an electric current equivalent to 10 elementary charges moving every 1.602176634 seconds, or approximately 6.241509074×10 elementary charges moving in a second. Prior to the redefinition, the ampere was defined as the current passing through two parallel wires 1 metre apart that produces a magnetic force of 2×10 newtons per metre.

View the full Wikipedia page for Ampere
↑ Return to Menu

Elementary charge in the context of Charge carrier

In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current. The electron and the proton are the elementary charge carriers, each carrying one elementary charge (e), of the same magnitude and opposite sign.

View the full Wikipedia page for Charge carrier
↑ Return to Menu