Electron microprobe in the context of "Electron microscopy"

Play Trivia Questions online!

or

Skip to study material about Electron microprobe in the context of "Electron microscopy"

Ad spacer

⭐ Core Definition: Electron microprobe

Electron probe microanalysis (EPMA), also known as electron probe X-ray microanalysis, electron microprobe analysis (EMPA) or electron probe analysis (EPA) is a microanalytical and imaging technique used to non-destructively determine the chemical element composition of small volumes of solid materials. The device used for this technique is known as an electron probe microanalyzer (also abbreviated EPMA), often shortened to electron microprobe (EMP) or electron probe (EP).

In EPMA, the instrument bombards the sample with a high-intensity electron beam, which then emits X-rays. The X-ray wavelengths emitted are characteristic of particular chemical elements and are analyzed using X-ray spectroscopy. The same principle is also employed in wavelength- orenergy-dispersive X-ray spectroscopy (WDX, EDX) commonly used in scanning electron microscopes (SEM), but EPMA is characterized by a fixed electron beam rather than a scanning one and primarily used for elemental analysis rather than imaging.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Electron microprobe in the context of Electron microscopy

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

Additional details can be found in the above links. This article contains some general information mainly about transmission and scanning electron microscopes.

↓ Explore More Topics
In this Dossier

Electron microprobe in the context of Sanidine

Sanidine is the high temperature form of potassium feldspar with a general formula K(AlSi3O8). Sanidine is found most typically in felsic volcanic rocks such as obsidian, rhyolite and trachyte. Sanidine crystallizes in the monoclinic crystal system. Orthoclase is a monoclinic polymorph stable at lower temperatures. At yet lower temperatures, microcline, a triclinic polymorph of potassium feldspar, is stable.

Due to the high temperature and rapid quenching, sanidine can contain more sodium in its structure than the two polymorphs that equilibrated at lower temperatures. Sanidine and high albite constitute a solid solution series with intermediate compositions termed anorthoclase. Exsolution of an albite phase does occur; resulting cryptoperthite can best be observed in electron microprobe images.

↑ Return to Menu

Electron microprobe in the context of Thin section

In optical mineralogy and petrography, a thin section (or petrographic thin section) is a thin slice of a rock or mineral sample, prepared in a laboratory, for use with a polarizing petrographic microscope, electron microscope and electron microprobe. A thin sliver of rock is cut from the sample with a diamond saw and ground optically flat. It is then mounted on a glass slide and then ground smooth using progressively finer abrasive grit until the sample is only 30 μm thick. The method uses the Michel-Lévy interference colour chart to determine thickness, typically using quartz as the thickness gauge because it is one of the most abundant minerals.

When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity of the light as seen by the viewer. As different minerals have different optical properties, most rock-forming minerals can be easily identified. Plagioclase for example can be seen in the photo on the right as a clear mineral with multiple parallel twinning planes. The large blue-green minerals are clinopyroxene with some exsolution of orthopyroxene.

↑ Return to Menu

Electron microprobe in the context of Petrography

Petrography is a branch of petrology that focuses on detailed descriptions of rocks. Someone who studies petrography is called a petrographer. The mineral content and the textural relationships within the rock are described in detail. The classification of rocks is based on the information acquired during the petrographic analysis. Petrographic descriptions start with the field notes at the outcrop and include macroscopic description of hand-sized specimens. The most important petrographer's tool is the petrographic microscope. The detailed analysis of minerals by optical mineralogy in thin section and the micro-texture and structure are critical to understanding the origin of the rock.

Electron microprobe or atom probe tomography analysis of individual grains as well as whole rock chemical analysis by atomic absorption, X-ray fluorescence, and laser-induced breakdown spectroscopy are used in a modern petrographic lab. Individual mineral grains from a rock sample may also be analyzed by X-ray diffraction when optical means are insufficient. Analysis of microscopic fluid inclusions within mineral grains with a heating stage on a petrographic microscope provides clues to the temperature and pressure conditions existent during the mineral formation.

↑ Return to Menu