Electron excitation in the context of "Scintillation (physics)"

Play Trivia Questions online!

or

Skip to study material about Electron excitation in the context of "Scintillation (physics)"

Ad spacer

⭐ Core Definition: Electron excitation

Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy. Or it is achieved through collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation). This is accompanied by the emission of a photon (radiative relaxation/spontaneous emission) or by a transfer of energy to another particle. The energy released is equal to the difference in energy levels between the electron energy states.

Excited states in nuclear, atomic, and molecule systems have distinct energy values, allowing external energy to be absorbed in the appropriate proportions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Electron excitation in the context of Scintillation (physics)

In condensed matter physics, scintillation (/ˈsɪntɪlʃən/ SIN-til-ay-shun) is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons (X-rays or gamma rays) or energetic particles (such as electrons, alpha particles, neutrons, or ions).

↓ Explore More Topics
In this Dossier

Electron excitation in the context of Non-ionizing radiation

Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation (the movement of an electron to a higher energy state). Non-ionizing radiation is not a significant health risk except in circumstances of prolonged exposure to higher frequency non-ionizing radiation or high power densities as may occur in laboratories and industrial workplaces. Non-ionizing radiation is used in various technologies, including radio broadcasting, telecommunications, medical imaging, and heat therapy.

In contrast, ionizing radiation has a higher frequency and shorter wavelength than non-ionizing radiation, and can be a serious health hazard: exposure to it can cause burns, radiation sickness, many kinds of cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with non-ionizing radiation.

↑ Return to Menu

Electron excitation in the context of Intrinsic semiconductor

An intrinsic semiconductor, also called a pure semiconductor, undoped semiconductor or i-type semiconductor, is a semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped. This means that some conductors are both intrinsic as well as extrinsic but only if n (electron donor dopant/excited electrons) is equal to p (electron acceptor dopant/vacant holes that act as positive charges).

The electrical conductivity of chemically pure semiconductors can still be affected by crystallographic defects of technological origin (like vacancies), some of which can behave similar to dopants. Their effect can often be neglected, though, and the number of electrons in the conduction band is then exactly equal to the number of holes in the valence band. The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg
0.8
Cd
0.2
Te
.

↑ Return to Menu

Electron excitation in the context of Quantum dot

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conduction band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the discrete energy levels of the quantum dot in the conduction band and the valence band.

In other words, a quantum dot can be defined as a structure on a semiconductor which is capable of confining electrons in three dimensions, enabling the ability to define discrete energy levels. The quantum dots are tiny crystals that can behave as individual atoms, and their properties can be manipulated.

↑ Return to Menu

Electron excitation in the context of Bond cleavage

In chemistry, bond cleavage, or bond fission, is the splitting of chemical bonds. This can be generally referred to as dissociation when a molecule is cleaved into two or more fragments.

In general, there are two classifications for bond cleavage: homolytic and heterolytic, depending on the nature of the process. The triplet and singlet excitation energies of a sigma bond can be used to determine if a bond will follow the homolytic or heterolytic pathway. A metal−metal sigma bond is an exception because the bond's excitation energy is extremely high, thus cannot be used for observation purposes.

↑ Return to Menu

Electron excitation in the context of Photoexcitation

Photoexcitation is a phenomenon in physics where an excited state of a quantum system (an atom or a molecule) is created by photon absorption. The excited state originates from the interaction between a photon and the quantum system when the energy of the photon is too low to cause photoionization. A very simple example of this process is electron excitation.

A photon's energy is directly proportional to the frequency of its associated electromagnetic wave. Thus, light with lower frequencies is associated to photons with a lower energy. In contrast, light with higher frequencies is associated to photons with a higher energy. The absorption of the photon takes place in accordance with the theory of quantum mechanics.

↑ Return to Menu