Electricity in the context of Burn (injury)


Electricity in the context of Burn (injury)

Electricity Study page number 1 of 10

Play TriviaQuestions Online!

or

Skip to study material about Electricity in the context of "Burn (injury)"


⭐ Core Definition: Electricity

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

The presence of either a positive or negative electric charge produces an electric field. The motion of electric charges is an electric current and produces a magnetic field. In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts.

↓ Menu
HINT:

In this Dossier

Electricity in the context of Public utilities

A public utility company (usually just utility) is an organization that maintains the infrastructure for a public service (often also providing a service using that infrastructure). Public utilities are subject to forms of public control and regulation ranging from local community-based groups to statewide government monopolies.

Public utilities are meant to supply goods and services that are considered essential; water, gas, electricity, telephone, waste disposal, and other communication systems represent much of the public utility market. The transmission lines used in the transportation of electricity, or natural gas pipelines, have natural monopoly characteristics. A monopoly can occur when it finds the best way to minimize its costs through economies of scale to the point where other companies cannot compete with it. If the infrastructure already exists in a given area, minimal benefit is gained through competing. In other words, these industries are characterized by economies of scale in production. Though it can be mentioned that these natural monopolies are handled or watched by a public utilities commission, or an institution that represents the government.

View the full Wikipedia page for Public utilities
↑ Return to Menu

Electricity in the context of Machine

A machine is a thermodynamic system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

Renaissance natural philosophers identified six simple machines which were the elementary devices that put a load into motion, and calculated the ratio of output force to input force, known today as mechanical advantage.

View the full Wikipedia page for Machine
↑ Return to Menu

Electricity in the context of Major appliance

A major appliance is a non-portable or semi-portable machine used for routine housekeeping tasks such as cooking, washing laundry, or food preservation. Such appliances are sometimes collectively known as white goods, as the products were traditionally white in color, although a variety of colors are now available. An appliance is different from a plumbing fixture because it uses electricity or fuel.

Major appliances differ from small appliances because they are bigger and not portable. They are often considered fixtures and part of real estate and as such they are often supplied to tenants as part of otherwise unfurnished rental properties. Major appliances may have special electrical connections, connections to gas supplies, or special plumbing and ventilation arrangements that may be permanently connected to the appliance. This limits where they can be placed in a home.

View the full Wikipedia page for Major appliance
↑ Return to Menu

Electricity in the context of Waste heat

Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.

Instead of being "wasted" by release into the ambient environment, sometimes waste heat (or cold) can be used by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building).

View the full Wikipedia page for Waste heat
↑ Return to Menu

Electricity in the context of Solar panel

A solar panel is a device that converts sunlight into electricity by using multiple solar modules that consist of photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct current electricity, which can be used to power various devices or be stored in batteries. Solar panels can be known as solar cell panels, or solar electric panels. Solar panels are usually arranged in groups called arrays or systems. A photovoltaic system consists of one or more solar panels, an inverter that converts direct current electricity to alternating current electricity, and sometimes other components such as controllers, meters, and trackers. Most panels are in solar farms or rooftop solar panels which supply the electricity grid.

Some advantages of solar panels are that they use a renewable and clean source of energy, reduce greenhouse gas emissions, and lower electricity bills. Some disadvantages are that they depend on the availability and intensity of sunlight, require cleaning, and have high initial costs. Solar panels are widely used for residential, commercial, and industrial purposes, as well as in space, often together with batteries.

View the full Wikipedia page for Solar panel
↑ Return to Menu

Electricity in the context of Radioisotope thermoelectric generator

A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts and is ideal for deployment in remote and harsh environments for extended periods with no risk of parts wearing out or malfunctioning.

RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. RTGs have been used as power sources in satellites, space probes, and uncrewed remote facilities such as a series of lighthouses built by the Soviet Union inside the Arctic Circle.

View the full Wikipedia page for Radioisotope thermoelectric generator
↑ Return to Menu

Electricity in the context of Hydroelectricity

Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies 15% of the world's electricity, almost 4,210 TWh in 2023, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel-powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted.

Construction of a hydroelectric complex can have significant environmental impact, principally in loss of arable land and population displacement. They also disrupt the natural ecology of the river involved, affecting habitats and ecosystems, and siltation and erosion patterns. While dams can ameliorate the risks of flooding, dam failure can be catastrophic.

View the full Wikipedia page for Hydroelectricity
↑ Return to Menu

Electricity in the context of Gross regional domestic product

Gross regional domestic product (GRDP), gross domestic product of region (GDPR), or gross state product (GSP) is a statistic that measures the size of a region's economy. It is the aggregate of gross value added (GVA) of all resident producer units in the region, and analogous to national gross domestic product. The GRDP includes regional estimates on the three major sectors including their sub-sectors, namely:

"The GRDP is usually presented in nominal and real terms. Nominal GRDP measures the value of the outputs of the economy at current prices. Real GRDP referred to as GRDP at constant prices, measures the value of an economy's output using the prices of a fixed base year. The real GRDP is useful in capturing real output growth since inflationary effects have been removed. It is, therefore, the most widely used measure of real income."

View the full Wikipedia page for Gross regional domestic product
↑ Return to Menu

Electricity in the context of Burn

A burn is an injury to skin, or other tissues, caused by heat, electricity, chemicals, friction, or ionizing radiation (such as sunburn, caused by ultraviolet radiation). Most burns are due to heat from hot fluids (called scalding), solids, or fire. Burns occur mainly in the home or the workplace. In the home, risks are associated with domestic kitchens, including stoves, flames, and hot liquids. In the workplace, risks are associated with fire and chemical and electric burns. Alcoholism and smoking are other risk factors. Burns can also occur as a result of self-harm or violence between people (assault).

Burns that affect only the superficial skin layers are known as superficial or first-degree burns. They appear red without blisters, and pain typically lasts around three days. When the injury extends into some of the underlying skin layer, it is a partial-thickness or second-degree burn. Blisters are frequently present and they are often very painful. Healing can require up to eight weeks and scarring may occur. In a full-thickness or third-degree burn, the injury extends to all layers of the skin. Often there is no pain and the burnt area is stiff. Healing typically does not occur on its own. A fourth-degree burn additionally involves injury to deeper tissues, such as muscle, tendons, or bone. The burn is often black and frequently leads to loss of the burned part.

View the full Wikipedia page for Burn
↑ Return to Menu

Electricity in the context of Stove

A stove or range is a device that generates heat inside or atop the device for local heating or cooking. Stoves can be powered with many fuels, such as natural gas, electricity, gasoline, wood, and coal.

The most common materials stoves are made of are cast iron, steel, and stone.

View the full Wikipedia page for Stove
↑ Return to Menu

Electricity in the context of Automation

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefits of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

Automation includes the use of various equipment and control systems such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering, stabilization of ships, aircraft and other applications and vehicles with reduced human intervention. Examples range from a household thermostat controlling a boiler to a large industrial control system with tens of thousands of input measurements and output control signals. Automation has also found a home in the banking industry. It can range from simple on-off control to multi-variable high-level algorithms in terms of control complexity.

View the full Wikipedia page for Automation
↑ Return to Menu

Electricity in the context of Electric light

An electric light, lamp, or light bulb is an electrical device that produces light from electricity. It is the most common form of artificial lighting. Lamps usually have a base made of ceramic, metal, glass, or plastic that secures them in the socket of a light fixture, which is also commonly referred to as a 'lamp.' The electrical connection to the socket may be made with a screw-thread base, two metal pins, two metal caps or a bayonet mount.

The three main categories of electric lights are incandescent lamps, which produce light by a filament heated white-hot by electric current, gas-discharge lamps, which produce light by means of an electric arc through a gas, such as fluorescent lamps, and LED lamps, which produce light by a flow of electrons across a band gap in a semiconductor.

View the full Wikipedia page for Electric light
↑ Return to Menu

Electricity in the context of Exothermic process

In thermodynamics, an exothermic process (from Ancient Greek έξω (éxō) 'outward' and θερμικός (thermikós) 'thermal') is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e.g. a battery), or sound (e.g. explosion heard when burning hydrogen). The term exothermic was first coined by 19th-century French chemist Marcellin Berthelot.

The opposite of an exothermic process is an endothermic process, one that absorbs energy, usually in the form of heat. The concept is frequently applied in the physical sciences to chemical reactions where chemical bond energy is converted to thermal energy (heat).

View the full Wikipedia page for Exothermic process
↑ Return to Menu

Electricity in the context of Solar power

Solar power, also known as solar electricity, is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Solar panels use the photovoltaic effect to convert light into an electric current. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

Photovoltaics (PV) were initially solely used as a source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. Since then, as the cost of solar panels has fallen, grid-connected solar PV systems' capacity and production has doubled about every three years. Three-quarters of new generation capacity is solar, with both millions of rooftop installations and gigawatt-scale photovoltaic power stations continuing to be built.

View the full Wikipedia page for Solar power
↑ Return to Menu

Electricity in the context of Photovoltaics

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

A photovoltaic system employs solar modules, each comprising a number of solar cells, which generate electrical power. PV installations may be ground-mounted, rooftop-mounted, wall-mounted or floating. The mount may be fixed or use a solar tracker to follow the sun across the sky.

View the full Wikipedia page for Photovoltaics
↑ Return to Menu

Electricity in the context of Concentrated solar power

Concentrated solar power (CSP, also known as concentrating solar power, concentrated solar thermal) systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat (solar thermal energy), which drives a heat engine (usually a steam turbine) connected to an electrical power generator or powers a thermochemical reaction.

As of 2021, global installed capacity of concentrated solar power stood at 6.8 GW. As of 2023, the total was 8.1 GW, with the inclusion of three new CSP projects in construction in China and in Dubai in the UAE. The U.S.-based National Renewable Energy Laboratory (NREL), which maintains a global database of CSP plants, counts 6.6 GW of operational capacity and another 1.5 GW under construction. By comparison, solar power reached 1 TW of global capacity in 2022, of which the overwhelming majority was photovoltaic.

View the full Wikipedia page for Concentrated solar power
↑ Return to Menu

Electricity in the context of Rooftop photovoltaic power station

A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters battery storage systems, charge controllers, monitoring systems, racking and mounting systems, energy management systems, net metering systems, disconnect switches, grounding equipment, protective devices, combiner boxes, weatherproof enclosures and other electrical accessories.

Rooftop mounted systems are small compared to utility-scale solar ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. A comprehensive life cycle analysis study showed that rooftop solar is better for the environment than utility-scale solar. Most rooftop PV stations are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5–20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1–10 MW.

View the full Wikipedia page for Rooftop photovoltaic power station
↑ Return to Menu