Electrical insulation in the context of Mylar


Electrical insulation in the context of Mylar

Electrical insulation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electrical insulation in the context of "Mylar"


⭐ Core Definition: Electrical insulation

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

A perfect insulator does not exist because even the materials used as insulators contain small numbers of mobile charges (charge carriers) which can carry current. In addition, all insulators become electrically conductive when a sufficiently large voltage is applied that the electric field tears electrons away from the atoms. This is known as electrical breakdown, and the voltage at which it occurs is called the breakdown voltage of an insulator. Some materials such as glass, paper and PTFE, which have high resistivity, are very good electrical insulators. A much larger class of materials, even though they may have lower bulk resistivity, are still good enough to prevent significant current from flowing at normally used voltages, and thus are employed as insulation for electrical wiring and cables. Examples include rubber-like polymers and most plastics which can be thermoset or thermoplastic in nature.

↓ Menu
HINT:

👉 Electrical insulation in the context of Mylar

BoPET (biaxially oriented polyethylene terephthalate) is a polyester film made from stretched polyethylene terephthalate (PET) and is used for its high tensile strength, chemical stability, dimensional stability, transparency reflectivity, and electrical insulation. When metallized, it has gas and moisture barrier properties. The film is "biaxially oriented", which means that the polymer chains are oriented parallel to the plane of the film, and therefore oriented over two axes. A variety of companies manufacture boPET and other polyester films under different brand names. In the UK and US, the best-known trade names are Mylar, Melinex, Lumirror and Hostaphan. It was the first biaxially oriented polymer to be manufactured on a mass commercial scale.

↓ Explore More Topics
In this Dossier

Electrical insulation in the context of Direct current

Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.

View the full Wikipedia page for Direct current
↑ Return to Menu

Electrical insulation in the context of Transmission medium

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While a material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission medium they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

Electromagnetic radiation can be transmitted through an optical medium, such as optical fiber, or through twisted pair wires, coaxial cable, or dielectric-slab waveguides. It may also pass through any physical material that is transparent to the specific wavelength, such as water, air, glass, or concrete. Sound is, by definition, the vibration of matter, so it requires a physical medium for transmission, as do other kinds of mechanical waves and heat energy. Historically, science incorporated various aether theories to explain the transmission medium. However, it is now known that electromagnetic waves do not require a physical transmission medium, and so can travel through the vacuum of free space. Regions of the insulative vacuum can become conductive for electrical conduction through the presence of free electrons, holes, or ions.

View the full Wikipedia page for Transmission medium
↑ Return to Menu

Electrical insulation in the context of Strain gauge

A strain gauge (also spelled strain gage) is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

View the full Wikipedia page for Strain gauge
↑ Return to Menu

Electrical insulation in the context of Microelectronics

Microelectronics is a subfield of electronics. As the name suggests, microelectronics relates to the study and manufacture (or microfabrication) of very small electronic designs and components. Usually, but not always, this means micrometre-scale or smaller. These devices are typically made from semiconductor materials. Many components of a normal electronic design are available in a microelectronic equivalent. These include transistors, capacitors, inductors, resistors, diodes and (naturally) insulators and conductors can all be found in microelectronic devices. Unique wiring techniques such as wire bonding are also often used in microelectronics because of the unusually small size of the components, leads and pads. This technique requires specialized equipment and is expensive.

Digital integrated circuits (ICs) consist of billions of transistors, resistors, diodes, and capacitors. Analog circuits commonly contain resistors and capacitors as well. Inductors are used in some high frequency analog circuits, but tend to occupy larger chip area due to their lower reactance at low frequencies. Gyrators can replace them in many applications.

View the full Wikipedia page for Microelectronics
↑ Return to Menu

Electrical insulation in the context of Paraffin wax

Paraffin wax (or petroleum wax) is a soft colorless solid derived from petroleum, coal, or oil shale that consists of a mixture of hydrocarbon molecules containing between 20 and 40 carbon atoms. It is solid at room temperature and begins to melt above approximately 37 °C (99 °F), and its boiling point is above 370 °C (698 °F). Common applications for paraffin wax include lubrication, electrical insulation, and candles; dyed paraffin wax can be made into crayons.

View the full Wikipedia page for Paraffin wax
↑ Return to Menu

Electrical insulation in the context of Band gap

In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron (and the electron hole in the valence band) are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band (mostly full) to the conduction band (mostly empty), then current can flow (see carrier generation and recombination). Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps (also called "wide" band gaps) are generally insulators, those with small band gaps (also called "narrow" band gaps) are semiconductors, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.

It is possible to produce laser induced insulator-metal transitions which have already been experimentally observed in some condensed matter systems, like thin films of C60, doped manganites, or in vanadium sesquioxide V2O3. These are special cases of the more general metal-to-nonmetal transitions phenomena which were intensively studied in the last decades. A one-dimensional analytic model of laser induced distortion of band structure was presented for a spatially periodic (cosine) potential. This problem is periodic both in space and time and can be solved analytically using the Kramers-Henneberger co-moving frame. The solutions can be given with the help of the Mathieu functions.

View the full Wikipedia page for Band gap
↑ Return to Menu

Electrical insulation in the context of Shellac

Shellac (/ʃəˈlæk/) is a resin secreted by the female lac bug on trees in the forests of India and Thailand. Chemically, it is mainly composed of aleuritic acid, jalaric acid, shellolic acid, and other natural waxes. It is processed and sold as dry flakes and dissolved in alcohol to make liquid shellac, which is used as a brush-on colorant, food glaze and wood finish. Shellac functions as a tough natural primer, sanding sealant, tannin-blocker, odor-blocker, stain, and high-gloss varnish. Shellac was once used in electrical applications as it is a good insulator and seals out moisture. Phonograph and 78 rpm gramophone records were made of shellac until it was replaced by vinyl.

From the time shellac replaced oil and wax finishes in the 19th century, it was one of the dominant wood finishes in the western world until it was largely replaced by nitrocellulose lacquer in the 1920s and 1930s. Besides wood finishing, shellac is used as an ingredient in food, medication and candy as confectioner's glaze, and to preserve harvested citrus fruit.

View the full Wikipedia page for Shellac
↑ Return to Menu

Electrical insulation in the context of Exciton

An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids. It transports energy without transporting net electric charge.

An exciton can form when an electron from the valence band of a crystal is promoted in energy to the conduction band, for instance when a material absorbs a photon. Promoting the electron to the conduction band leaves a positively charged hole in the valence band. Here 'hole' represents the unoccupied quantum mechanical electron state with a positive charge, an analogue in crystal of a positron. Because of the attractive Coulomb force between the electron and the hole, a bound state is formed, akin to that of the electron and proton in a hydrogen atom or the electron and positron in positronium. Excitons are composite bosons since they are formed from two fermions which are the electron and the hole.

View the full Wikipedia page for Exciton
↑ Return to Menu

Electrical insulation in the context of Lichtenberg figure

A Lichtenberg figure (German: Lichtenberg-Figur), or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high-voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

Lichtenberg figures are natural phenomena that exhibit fractal properties.

View the full Wikipedia page for Lichtenberg figure
↑ Return to Menu

Electrical insulation in the context of Overhead power line

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors (commonly multiples of three) suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages, and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.

View the full Wikipedia page for Overhead power line
↑ Return to Menu

Electrical insulation in the context of Chloroprene rubber

Neoprene (also polychloroprene) is a family of synthetic rubbers that are produced by polymerization of chloroprene. Neoprene exhibits good chemical stability and maintains flexibility over a wide temperature range. Neoprene is sold either as solid rubber or in latex form and is used in a wide variety of commercial applications, such as laptop sleeves, orthopaedic braces (wrist, knee, etc.), electrical insulation, medical gloves, liquid and sheet-applied elastomeric membranes or flashings, and automotive fan belts.

View the full Wikipedia page for Chloroprene rubber
↑ Return to Menu