Electrical conduit in the context of "Service drop"

Play Trivia Questions online!

or

Skip to study material about Electrical conduit in the context of "Service drop"

Ad spacer

⭐ Core Definition: Electrical conduit

An electrical conduit is a tube used to protect and route electrical wiring in a building or structure. Electrical conduit may be made of metal, plastic, fiber, or fired clay. Most conduit is rigid, but flexible conduit is used for some purposes. Conduit is generally installed by electricians at the site of installation of electrical equipment. Its use, form, and installation details are often specified by wiring regulations, such as the US National Electrical Code (NEC) and other building codes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Electrical conduit in the context of Service drop

In electric power distribution, a service drop is an overhead electrical line running from a utility pole, to a customer's building or other premises. It is the point where electric utilities provide power to their customers. The customer connection to an underground distribution system is usually called a "service lateral". Conductors of a service drop or lateral are usually owned and maintained by the utility company, but some industrial drops are installed and owned by the customer.

At the customer's premises, the wires usually enter the building through a weatherhead that protects against entry of rain and snow, and drop down through conduit to an electric meter which measures and records the power used for billing purposes, then enters the main service panel. The utility's portion of the system ends, and the customer's wiring begins, at the output socket of the electric meter. The service panel will contain a "main" fuse or circuit breaker, which controls all of the electric current entering the building at once, and a number of smaller fuses/breakers, which protect individual branch circuits. There is always provision for all power to be cut off by operating either a single switch or small number of switches (maximum of six in the United States, for example); when circuit breakers are used this is provided by the main circuit breaker.

↓ Explore More Topics
In this Dossier

Electrical conduit in the context of HDPE pipe

HDPE pipe (high-density polyethylene pipe) is a type of flexible plastic pipe used to transfer fluids and gases. It is often employed for replacing aging concrete or steel main pipelines. Constructed from the thermoplastic HDPE (high-density polyethylene), it has low permeability and robust molecular bonding, making it suitable for high-pressure pipelines. HDPE pipe is often used for water mains, gas mains, sewer mains, slurry transfer lines, rural irrigation, fire-suppression system supply lines, electrical and communication conduits, and stormwater and drainage pipes.

It is frequently used in pipe bursting.

↑ Return to Menu

Electrical conduit in the context of Direct-buried cable

Direct-buried cable (DBC) is a kind of communications or transmissions electrical cable which is specially designed to be buried under the ground without any other cover, sheath, or duct to protect it.

Most direct-buried cable is built to specific tolerances to heat, moisture, conductivity, and soil acidity. Unlike standard telecommunications and power cables, which have only a thin layer of insulation and a waterproof outer cover, DBC consists of multiple layers of heavy metallic-banded sheathing, reinforced by heavy rubber covers, shock-absorbing gel, wrapped thread-fortified waterproof tape, and stiffened by a heavy metal core.

↑ Return to Menu

Electrical conduit in the context of Weatherhead

A weatherhead, also called a weathercap, service head, service entrance cap, or gooseneck (slang) is a weatherproof service drop entry point where overhead power or telephone wires enter a building, or where wires transition between overhead and underground cables. At a building the wires enter a conduit, a protective metal pipe, and the weatherhead is a waterproof cap on the end of the conduit that allows the wires to enter without letting in water. It is shaped like a hood, with the surface where the wires enter facing down at an angle of at least 45°, to shield it from precipitation. A rubberized gasket makes for a tight seal against the wires. Before they enter the weatherhead, a drip loop is left in the overhead wires, which permits rain water that collects on the wires to drip off before reaching the weatherhead.

A weatherhead termination is only used at low voltages (up to 600 volts), since higher distribution voltages require more insulation between conductors and metal enclosures. Higher-voltage connections are made through a pothead.

↑ Return to Menu

Electrical conduit in the context of Directional boring

Directional boring, also referred to as horizontal directional drilling (HDD), is a minimal impact trenchless method of installing underground utilities such as pipe, conduit, or cables in a relatively shallow arc or radius along a prescribed underground path using a surface-launched drilling rig. Directional boring offers significant environmental advantages over traditional cut and cover pipeline/utility installations. The technique is routinely used when conventional trenching or excavating is not practical or when minimal surface disturbance is required.

Although often used interchangeably, the terms directional boring and horizontal directional drilling are distinct in that they convey a different sense of scale. The term "directional boring" or "bore" is generally reserved for mini/small sized drilling rigs, small diameter bores, and crossing lengths in terms of hundreds of feet. Generally, the term Horizontal Directional Drilling (HDD) is intended to describe large/maxi sized drilling rigs, large diameter bores, and crossing lengths in terms of thousands of feet. Directional boring and HDD are similar in some respects to directional drilling associated with the oil industry, however, an equal comparison cannot be drawn as the procedures serve markedly different functions. Directional boring can be utilized with various pipe materials such as PVC, polyethylene, polypropylene, ductile iron, and steel provided that the pipe's properties (wall thickness and material strength) enable it to be both installed and operated (if applicable) under acceptable stress limits.

↑ Return to Menu