Ecological niche in the context of Spirochete


Ecological niche in the context of Spirochete

Ecological niche Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Ecological niche in the context of "Spirochete"


⭐ Core Definition: Ecological niche

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors (for example, by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it, in turn, alters those same factors (for example, limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey). "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

A Grinnellian niche is determined by the habitat in which a species lives and its accompanying behavioral adaptations. An Eltonian niche emphasizes that a species not only grows in and responds to an environment, it may also change the environment and its behavior as it grows. The Hutchinsonian niche uses mathematics and statistics to try to explain how species coexist within a given community.

↓ Menu
HINT:

In this Dossier

Ecological niche in the context of Species

A species (pl.species) is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. It can be defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, palaeontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. About 14% of these had been described by 2011. All species (except viruses) are given a two-part name, a "binomen". The first part of a binomen is the name of a genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature, also sometimes in zoological nomenclature). For example, Boa constrictor is one of the species of the genus Boa, with constrictor being the specific name.

While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clonal lineage is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that a fossil lineage should be divided into multiple chronospecies, or when populations have diverged to have enough distinct character states to be described as cladistic species.

View the full Wikipedia page for Species
↑ Return to Menu

Ecological niche in the context of Phanerozoic

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 542 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

The time span of the Phanerozoic starts with the sudden appearance of fossilised evidence of a number of animal phyla; the evolution of those phyla into diverse forms; the evolution of plants; the evolution of fish, arthropods and molluscs; the terrestrial colonization and evolution of insects, chelicerates, myriapods and tetrapods; and the development of modern flora dominated by vascular plants. During this time span, tectonic forces which move the continents had collected them into a single landmass known as Pangaea (the most recent supercontinent), which then separated into the current continental landmasses.

View the full Wikipedia page for Phanerozoic
↑ Return to Menu

Ecological niche in the context of Habitat

In ecology, habitat refers to the array of resources, biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species' habitat can be seen as the physical manifestation of its ecological niche. Thus "habitat" is a species-specific term, fundamentally different from concepts such as environment or vegetation assemblages, for which the term "habitat-type" is more appropriate.

The physical factors may include (for example): soil, moisture, range of temperature, and light intensity. Biotic factors include the availability of food and the presence or absence of predators. Every species has particular habitat requirements, habitat generalist species are able to thrive in a wide array of environmental conditions while habitat specialist species require a very limited set of factors to survive. The habitat of a species is not necessarily found in a geographical area, it can be the interior of a stem, a rotten log, a rock or a clump of moss; a parasitic organism has as its habitat the body of its host, part of the host's body (such as the digestive tract), or a single cell within the host's body.

View the full Wikipedia page for Habitat
↑ Return to Menu

Ecological niche in the context of Plankton

Plankton are organisms that drift in water (or air) but are unable to actively propel themselves against currents (or wind). Marine plankton include drifting organisms that inhabit the saltwater of oceans and the brackish waters of estuaries. Freshwater plankton are similar to marine plankton, but are found in lakes and rivers. An individual plankton organism in the plankton is called a plankter. In the ocean plankton provide a crucial source of food, particularly for larger filter-feeding animals, such as bivalves, sponges, forage fish and baleen whales.

Plankton includes organisms from species across all the major biological kingdoms, ranging in size from the microscopic (such as bacteria, archaea, protozoa and microscopic algae and fungi) to larger organisms (such as jellyfish and ctenophores). This is because plankton are defined by their ecological niche and level of motility rather than by any phylogenetic or taxonomic classification. The plankton category differentiates organisms from those that can swim against a current, called nekton, and those that live on the deep sea floor, called benthos. Organisms that float on or near the water's surface are called neuston. Neuston that drift as water currents or wind take them, and lack the swimming ability to counter this, form a special subgroup of plankton. Mostly plankton just drift where currents take them, though some, like jellyfish, swim slowly but not fast enough to generally overcome the influence of currents.

View the full Wikipedia page for Plankton
↑ Return to Menu

Ecological niche in the context of Extinction risk from climate change

There are several plausible pathways that could lead to plant and animal species extinction from climate change. Every species has evolved to exist within a certain ecological niche, but climate change leads to changes of temperature and average weather patterns. These changes can push climatic conditions outside of the species' niche, and ultimately render it extinct. Normally, species faced with changing conditions can either adapt in place through microevolution or move to another habitat with suitable conditions. However, the speed of recent climate change is very fast. Due to this rapid change, for example cold-blooded animals (a category which includes amphibians, reptiles and all invertebrates) may struggle to find a suitable habitat within 50 km of their current location at the end of this century (for a mid-range scenario of future global warming).

Climate change also increases both the frequency and intensity of extreme weather events, which can directly wipe out regional populations of species. Those species occupying coastal and low-lying island habitats can also become extinct by sea level rise. This has already happened with Bramble Cay melomys in Australia. Finally, climate change has been linked with the increased prevalence and global spread of certain diseases affecting wildlife. This includes Batrachochytrium dendrobatidis, a fungus that is one of the main drivers of the worldwide decline in amphibian populations.

View the full Wikipedia page for Extinction risk from climate change
↑ Return to Menu

Ecological niche in the context of Food

Food is any substance consumed by an organism for nutritional support. Food is usually of plant, animal, or fungal origin and contains essential nutrients such as carbohydrates, fats, proteins, vitamins, or minerals. The substance is ingested by an organism and assimilated by the organism's cells to provide energy, maintain life, or support growth. Different species of animals have different feeding behaviours that satisfy the needs of their metabolisms and have evolved to fill specific ecological niches within specific geographical contexts.

Omnivorous humans are highly adaptable and have adapted to obtaining food in many different ecosystems. Humans generally use cooking to prepare food for consumption. The majority of the food energy required is supplied by the industrial food industry, which produces food through intensive agriculture and distributes it through complex food processing and food distribution systems. This system of conventional agriculture relies heavily on fossil fuels, which means that the food and agricultural systems are one of the major contributors to climate change, accounting for as much as 37% of total greenhouse gas emissions.

View the full Wikipedia page for Food
↑ Return to Menu

Ecological niche in the context of Seed

In botany, a seed is a plant structure containing an embryo and stored nutrients in a protective coat called a testa. More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

The formation of the seed is the defining part of the process of reproduction in seed plants (spermatophytes). Other plants such as ferns, mosses and liverworts, do not have seeds and use water-dependent means to propagate themselves. Seed plants now dominate biological niches on land, from forests to grasslands both in hot and cold climates.

View the full Wikipedia page for Seed
↑ Return to Menu

Ecological niche in the context of Seabird

Seabirds (also known as marine birds) are birds that are adapted to life within the marine environment. While seabirds vary greatly in lifestyle, behaviour and physiology, they often exhibit striking convergent evolution, as the same environmental problems and feeding niches have resulted in similar adaptations. The first seabirds evolved in the Cretaceous period, while modern seabird families emerged in the Paleogene.

Seabirds generally live longer, breed later and have fewer young than other birds, but they invest a great deal of time in their young. Most species nest in colonies, varying in size from a few dozen birds to millions. Many species are famous for undertaking long annual migrations, crossing the equator or circumnavigating the Earth in some cases. They feed both at the ocean's surface and below it, and even on each other. Seabirds can be highly pelagic, coastal, or in some cases spend a part of the year away from the sea entirely.

View the full Wikipedia page for Seabird
↑ Return to Menu

Ecological niche in the context of Ornithology

Ornithology, from Ancient Greek ὄρνις (órnis), meaning "bird", and λόγος (lógos), meaning "study", is a branch of zoology dedicated to the study of birds. Several aspects of ornithology differ from related disciplines, due partly to the high visibility and the aesthetic appeal of birds. It has also been an area with a large contribution made by amateurs in terms of time, resources, and financial support. Studies on birds have helped develop key concepts in biology including evolution, behaviour and ecology such as the definition of species, the process of speciation, instinct, learning, ecological niches, guilds, insular biogeography, phylogeography, and conservation.

While early ornithology was principally concerned with descriptions and distributions of species, ornithologists today seek answers to very specific questions, often using birds as models to test hypotheses or predictions based on theories. Most modern biological theories apply across life forms, and the number of scientists who identify themselves as "ornithologists" has therefore declined. A wide range of tools and techniques are used in ornithology, both inside the laboratory and out in the field, and innovations are constantly made. Most biologists who recognise themselves as "ornithologists" study specific biology research areas, such as anatomy, physiology, taxonomy (phylogenetics), ecology, or behaviour.

View the full Wikipedia page for Ornithology
↑ Return to Menu

Ecological niche in the context of Ecosystem diversity

Ecosystem diversity deals with the variations in ecosystems within a geographical location and its overall impact on human existence and the environment.

Ecosystem diversity addresses the combined characteristics of biotic properties which are living organisms (biodiversity) and abiotic properties such as nonliving things like water or soil (geodiversity). It is a variation in the ecosystems found in a region or the variation in ecosystems over the whole planet. Ecological diversity includes the variation in both terrestrial and aquatic ecosystems. Ecological diversity can also take into account the variation in the complexity of a biological community, including the number of different niches, the number of and other ecological processes. An example of ecological diversity on a global scale would be the variation in ecosystems, such as deserts, forests, grasslands, wetlands and oceans. Ecological diversity is the largest scale of biodiversity, and within each ecosystem, there is a great deal of both species and genetic diversity.

View the full Wikipedia page for Ecosystem diversity
↑ Return to Menu

Ecological niche in the context of Juvenile (organism)

A juvenile is an individual organism (especially an animal) that has not yet reached its adult form, sexual maturity or size. Juveniles can look very different from the adult form, particularly in colour, and may not fill the same niche as the adult form. In many organisms the juvenile has a different name from the adult (see List of animal names).

Some organisms reach sexual maturity in a short metamorphosis, such as ecdysis in many insects and some other arthropods. For others, the transition from juvenile to fully mature is a more prolonged process—puberty in humans and other species (like higher primates and whales), for example. In such cases, juveniles during this transformation are sometimes called subadults.

View the full Wikipedia page for Juvenile (organism)
↑ Return to Menu

Ecological niche in the context of Adaptive radiation

In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos ("Darwin's finches"), but examples are known from around the world.

View the full Wikipedia page for Adaptive radiation
↑ Return to Menu

Ecological niche in the context of Squid

A squid (pl.squid) is a mollusc with an elongated soft body, large eyes, eight arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also called squid despite not strictly fitting these criteria). Like all other cephalopods, squid have a distinct head, bilateral symmetry, and a mantle. They are mainly soft-bodied, like octopuses, but have a small internal skeleton in the form of a rod-like gladius or pen, made of chitin.

Squid diverged from other cephalopods during the Jurassic and radiated at the beginning of the Late Cretaceous, and occupy a similar role to teleost fish as open-water predators of similar size and behaviour. They play an important role in the open-water food web. The two long tentacles are used to grab prey and the eight arms to hold and control it. The beak then cuts the food into suitable size chunks for swallowing. Squid are rapid swimmers, moving by jet propulsion, and largely locate their prey by sight. They are among the most intelligent of invertebrates, with groups of Humboldt squid having been observed hunting cooperatively. They are preyed on by sharks, other fish, sea birds, seals and cetaceans, particularly sperm whales.

View the full Wikipedia page for Squid
↑ Return to Menu

Ecological niche in the context of Microbiota

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

The term microbiome describes either the collective genomes of the microbes that reside in an ecological niche or else the microbes themselves.

View the full Wikipedia page for Microbiota
↑ Return to Menu

Ecological niche in the context of Suspension feeding

Filter feeders are aquatic animals that acquire nutrients by feeding on organic matter, food particles or smaller organisms (bacteria, microalgae and zooplanktons) suspended in water, typically by having the water pass over or through a specialized filtering organ that sieves out and/or traps solids. Filter feeders can play an important role in condensing biomass and removing excess nutrients (such as nitrogen and phosphate) from the local waterbody, and are therefore considered water-cleaning ecosystem engineers. They are also important in bioaccumulation and, as a result, as indicator organisms.

Filter feeders can be sessile, planktonic, nektonic or even neustonic (in the case of the buoy barnacle) depending on the species and the niches they have evolved to occupy. Extant species that rely on such method of feeding encompass numerous phyla, including poriferans (sponges), cnidarians (jellyfish, sea pens and corals), arthropods (krill, mysids and barnacles), molluscs (bivalves, such as clams, scallops and oysters), echinoderms (sea lilies) and chordates (lancelets, sea squirts and salps, as well as many marine vertebrates such as most species of forage fish, American paddlefish, silver and bighead carps, baleen whales, manta ray and three species of sharks—the whale shark, basking shark and megamouth shark). Some water birds such as flamingos and certain duck species, though predominantly terrestrial, are also filter feeders when foraging.

View the full Wikipedia page for Suspension feeding
↑ Return to Menu