Earth mass in the context of "Transit-timing variation"

Play Trivia Questions online!

or

Skip to study material about Earth mass in the context of "Transit-timing variation"

Ad spacer

⭐ Core Definition: Earth mass

An Earth mass (denoted as M🜨, M or ME, where 🜨 and are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M🜨 = 5.9722×10 kg, with a relative uncertainty of 10. It is equivalent to an average density of 5515 kg/m. Using the nearest metric prefix, the Earth mass is approximately six ronnagrams, or 6.0 Rg.

The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to 333000 Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth–Moon system is close to 6.0457×10 kg.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Earth mass in the context of Solar mass

The solar mass (M) is a frequently used unit of mass in astronomy, equal to approximately 2×10 kg. It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. More precisely, the mass of the Sun is

The solar mass is about 333000 times the mass of Earth (M🜨), or 1047 times the mass of Jupiter (MJ).

↑ Return to Menu

Earth mass in the context of Eris (dwarf planet)

Eris (minor-planet designation: 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. It was named in September 2006 after the Greco–Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive in the Solar System (counting moons). It is also the largest known object in the Solar System that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometres (1,445 ± 7 mi) in diameter; its mass is 0.28% that of the Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a surface area that is comparable to that of Russia or South America.

Eris has one large known moon, Dysnomia. In February 2016, Eris's distance from the Sun was 96.3 AU (14.41 billion km; 8.95 billion mi), more than three times that of Neptune or Pluto. With the exception of long-period comets, Eris and Dysnomia were the most distant known natural objects in the Solar System until the discovery of 2018 AG37 and 2018 VG18 in 2018.

↑ Return to Menu

Earth mass in the context of Lunar distance

The instantaneous Earth–Moon distance, or distance to the Moon, is the distance from the center of Earth to the center of the Moon. In contrast, the Lunar distance (LD or ), or Earth–Moon characteristic distance, is a unit of measure in astronomy. More technically, it is the semi-major axis of the geocentric lunar orbit. The average lunar distance is approximately 385,000 km (239,000 mi), or 1.3 light-seconds. It is roughly 30 times Earth's diameter and a non-stop plane flight traveling that distance would take more than two weeks. Around 389 lunar distances make up an astronomical unit (roughly the distance from Earth to the Sun).

Lunar distance is commonly used to express the distance to near-Earth object encounters. Lunar semi-major axis is an important astronomical datum. It has implications for testing gravitational theories such as general relativity and for refining other astronomical values, such as the mass, radius, and rotation of Earth. The measurement is also useful in measuring the lunar radius, as well as the distance to the Sun.

↑ Return to Menu

Earth mass in the context of John Michell

John Michell (/ˈmɪəl/; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "one of the greatest unsung scientists of all time", he is the first person known to have proposed the existence of stellar bodies comparable to black holes, and the first to have suggested that earthquakes travelled in (seismic) waves. Recognizing that double stars were a product of mutual gravitation, he was the first to apply statistics to the study of the cosmos. He invented an apparatus to measure the mass of the Earth, and explained how to manufacture an artificial magnet. He has been called the father both of seismology and of magnetometry.

According to one science journalist, "a few specifics of Michell's work really do sound like they are ripped from the pages of a twentieth century astronomy textbook." The American Physical Society (APS) described Michell as being "so far ahead of his scientific contemporaries that his ideas languished in obscurity, until they were re-invented more than a century later". The Society stated that while "he was one of the most brilliant and original scientists of his time, Michell remains virtually unknown today, in part because he did little to develop and promote his own path-breaking ideas".

↑ Return to Menu

Earth mass in the context of Planetary mass

In astronomy, planetary mass is a measure of the mass of a planet-like astronomical object. Within the Solar System, planets are usually measured in the astronomical system of units, where the unit of mass is the solar mass (M), the mass of the Sun. In the study of extrasolar planets, the unit of measure is typically the mass of Jupiter (MJ) for large gas giant planets, and the mass of Earth (M🜨) for smaller rocky terrestrial planets.

The mass of a planet within the Solar System is an adjusted parameter in the preparation of ephemerides. There are three variations of how planetary mass can be calculated:

↑ Return to Menu

Earth mass in the context of Mega-Earth

A mega-Earth or massive solid planet is a proposed neologism for a massive terrestrial exoplanet that is at least ten times the mass of Earth (M🜨). Mega-Earths would be substantially more massive than super-Earths (terrestrial and ocean planets with masses around 5–10 M🜨). The term "mega-Earth" was coined in 2014, when Kepler-10c was revealed to be a Neptune-mass planet with a density considerably greater than that of Earth. However, it has since been determined to be a typical volatile-rich planet weighing just under half that mass.

Mega-Earths or comparable objects may exist as remnant cores of evaporated gas giants or white dwarfs, and may also form around massive stars and supermassive black holes as blanets for the latter.

↑ Return to Menu

Earth mass in the context of Cavendish experiment

The Cavendish experiment, performed in 1797–1798 by English scientist Henry Cavendish, was the first experiment to measure the force of gravity between masses in the laboratory and the first to yield accurate values for the gravitational constant. Because of the unit conventions then in use, the gravitational constant does not appear explicitly in Cavendish's work. Instead, the result was originally expressed as the relative density of Earth, or equivalently the mass of Earth. His experiment gave the first accurate values for these geophysical constants.

The experiment was devised sometime before 1783 by the English geologist John Michell, who constructed a torsion balance apparatus for it. However, Michell died in 1793 without completing the work. After his death the apparatus passed to Francis John Hyde Wollaston and then to Cavendish, who rebuilt it, but kept close to Michell's original plan. Cavendish then carried out a series of measurements with the equipment and reported his results in the Philosophical Transactions of the Royal Society in 1798.

↑ Return to Menu