Early Earth in the context of "Faint young Sun paradox"

Play Trivia Questions online!

or

Skip to study material about Early Earth in the context of "Faint young Sun paradox"

Ad spacer

⭐ Core Definition: Early Earth

Early Earth, also known as Proto-Earth, is loosely defined as Earth in the first one billion years — or gigayear (10 y or Ga) — of its geological history, from its initial formation in the young Solar System at about 4.55 billion years ago (Gya), to the end of the Eoarchean era at approximately 3.5 Gya. On the geologic time scale, this comprises all of the Hadean eon and approximately one-third of the Archean eon, starting with the formation of the Earth about 4.6 Gya, and ended at the start of the Paleoarchean era 3.6 Gya.

This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion, and transition of the Earth's atmosphere from a hydrogen/helium-predominant primary atmosphere collected from the protoplanetary disk to a reductant secondary atmosphere rich in nitrogen, methane and CO2. This time period included intense impact events as the young Proto-Earth, a protoplanet of about 0.63 Earth masses, began clearing the neighborhood, including the early Moon-forming collision with Theia — a Mars-sized co-orbital planet likely perturbed from the L4 Lagrange point — around 0.032 Ga after formation of the Solar System, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, meteorites or comets from the Outer Solar System might have delivered water and other volatile compounds to the Earth's mantle, crust and ancient atmosphere in an intense "late veneer" bombardment. As the Earth's planetary surface eventually cooled and formed a stable but evolving crust during the end-Hadean, most of the water vapor condensed out of the atmosphere and precipitated into a superocean that covered nearly all of the Earth's surface, transforming the initially lava planet Earth of the Hadean into an ocean planet at the early Archean, where the earliest known life forms appeared soon afterwards.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Early Earth in the context of Cyanobacteria

Cyanobacteria (/sˌænbækˈtɪəriə/ sy-AN-oh-bak-TEER-ee-ə) are a group of autotrophic gram-negative bacteria of the phylum Cyanobacteriota that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" (from Ancient Greek κύανος (kúanos) 'blue') refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae.

Cyanobacteria are probably the most numerous taxon to have ever existed on Earth and the first organisms known to have produced oxygen, having appeared in the middle Archean eon and apparently originated in a freshwater or terrestrial environment. Their photopigments can absorb the red- and blue-spectrum frequencies of sunlight (thus reflecting a greenish color) to split water molecules into hydrogen ions and oxygen. The hydrogen ions are used to react with carbon dioxide to produce complex organic compounds such as carbohydrates (a process known as carbon fixation), and the oxygen is released as a byproduct. By continuously producing and releasing oxygen over billions of years, cyanobacteria are thought to have converted the early Earth's anoxic, weakly reducing prebiotic atmosphere, into an oxidizing one with free gaseous oxygen (which previously would have been immediately removed by various surface reductants), resulting in the Great Oxidation Event and the "rusting of the Earth" during the early Proterozoic, dramatically changing the composition of life forms on Earth. The subsequent adaptation of early single-celled organisms to survive in oxygenous environments likely led to endosymbiosis between anaerobes and aerobes, and hence the evolution of eukaryotes during the Paleoproterozoic.

↑ Return to Menu

Early Earth in the context of History of the Earth

The natural history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

The geological time scale (GTS), as defined by international convention, depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula. Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

↑ Return to Menu

Early Earth in the context of Prebiotic atmosphere

The prebiotic atmosphere is the second atmosphere present on Earth before today's biotic, oxygen-rich third atmosphere, and after the first atmosphere (which was mainly water vapor and simple hydrides) of Earth's formation. The formation of the Earth, roughly 4.5 billion years ago, involved multiple collisions and coalescence of planetary embryos. This was followed by an over 100 million year period on Earth where a magma ocean was present, the atmosphere was mainly steam, and surface temperatures reached up to 8,000 K (14,000 °F). Earth's surface then cooled and the atmosphere stabilized, establishing the prebiotic atmosphere. The environmental conditions during this time period were quite different from today: the Sun was about 30% dimmer overall yet brighter at ultraviolet and x-ray wavelengths; there was a liquid ocean; it is unknown if there were continents but oceanic islands were likely; Earth's interior chemistry (and thus, volcanic activity) was different; there was a larger flux of impactors (e.g. comets and asteroids) hitting Earth's surface.

Studies have attempted to constrain the composition and nature of the prebiotic atmosphere by analyzing geochemical data and using theoretical models that include our knowledge of the early Earth environment. These studies indicate that the prebiotic atmosphere likely contained more CO2 than the modern Earth, had N2 within a factor of 2 of the modern levels, and had vanishingly low amounts of O2. The atmospheric chemistry is believed to have been "weakly reducing", where reduced gases like CH4, NH3, and H2 were present in small quantities. The composition of the prebiotic atmosphere was likely periodically altered by impactors, which may have temporarily caused the atmosphere to have been "strongly reduced".

↑ Return to Menu

Early Earth in the context of Reducing atmosphere

A reducing atmosphere is an atmosphere in which oxidation is prevented by the absence of oxygen and other oxidizing gases or vapours, and which may contain actively reductant gases such as hydrogen, carbon monoxide, methane and hydrogen sulfide that would be readily oxidized to remove any free oxygen. Although Early Earth had a reducing prebiotic atmosphere prior to the Proterozoic eon, starting at about 2.5 billion years ago in the late Neoarchaean period, the Earth's atmosphere experienced a significant rise in oxygen and transitioned to an oxidizing atmosphere with a surplus of molecular oxygen (dioxygen, O2) as the primary oxidizing agent.

↑ Return to Menu

Early Earth in the context of Purple Earth hypothesis

The Purple Earth hypothesis (PEH) is an astrobiological hypothesis, first proposed by molecular biologist Shiladitya DasSarma in 2007, that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish rather than its current greenish color. It is estimated to have occurred between 3.5 and 2.4 billion years ago during the Archean eon, prior to the Great Oxygenation Event and Huronian glaciation.

Retinal-containing cell membranes exhibit a single light absorption peak centered in the energy-rich green-yellow region of the visible spectrum, but transmit and reflect red and blue light, resulting in a magenta color. Chlorophyll pigments, in contrast, absorb red and blue light, but little or no green light, which results in the characteristic green reflection of plants, cyanobacteria, green algae, and other organisms with chlorophyllic organelles. The simplicity of retinal pigments in comparison to the more complex chlorophyll, their association with isoprenoid lipids in the cell membrane, as well as the discovery of archaeal membrane components in ancient sediments on the Early Earth are consistent with an early appearance of life forms with purple membranes prior to the turquoise of the Canfield ocean and later green photosynthetic organisms.

↑ Return to Menu