Dynamite in the context of "Rock blasting"

Play Trivia Questions online!

or

Skip to study material about Dynamite in the context of "Rock blasting"

Ad spacer

⭐ Core Definition: Dynamite

Dynamite is an explosive made of nitroglycerin, sorbents (such as powdered shells or clay), and stabilizers. It was invented by the Swedish chemist and engineer Alfred Nobel in Geesthacht, Northern Germany, and was patented in 1867. It rapidly gained wide-scale use as a more robust alternative to the traditional black powder explosives. It allows the use of nitroglycerine's favorable explosive properties while greatly reducing its risk of accidental detonation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Dynamite in the context of Rock blasting

Drilling and blasting is the controlled use of explosives and other methods, such as gas pressure blasting pyrotechnics, to break rock for excavation. It is practiced most often in mining, quarrying and civil engineering such as dam, tunnel or road construction. The result of rock blasting is often known as a rock cut.

Drilling and blasting currently utilizes many different varieties of explosives with different compositions and performance properties. Higher velocity explosives are used for relatively hard rock in order to shatter and break the rock, while low velocity explosives are used in soft rocks to generate more gas pressure and a greater heaving effect. For instance, an early 20th-century blasting manual compared the effects of black powder to that of a wedge, and dynamite to that of a hammer. The most commonly used explosives in mining today are ANFO based blends due to lower cost than dynamite.

↓ Explore More Topics
In this Dossier

Dynamite in the context of Conservation of energy

The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. In the case of a closed system, the principle says that the total amount of energy within the system can only be changed through energy entering or leaving the system. Energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite.

Classically, the conservation of energy was distinct from the conservation of mass. However, special relativity shows that mass is related to energy and vice versa by , the equation representing mass–energy equivalence, and science now takes the view that mass-energy as a whole is conserved. This implies that mass can be converted to energy, and vice versa. This is observed in the nuclear binding energy of atomic nuclei, where a mass defect is measured. It is believed that mass-energy equivalence becomes important in extreme physical conditions, such as those that likely existed in the universe very shortly after the Big Bang or when black holes emit Hawking radiation.

↑ Return to Menu

Dynamite in the context of Reflection seismology

Reflection seismology (or seismic reflection) is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator. Reflection seismology is similar to sonar and echolocation.

↑ Return to Menu

Dynamite in the context of Explosive device

An explosive device typically refers to a bomb that is not used by a military. It contains an explosive with a detonator connected to a triggering mechanism to form a device used for a specific purpose.

↑ Return to Menu

Dynamite in the context of TNT equivalent

TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. A ton of TNT equivalent is a unit of energy defined by convention to be 4.184 gigajoules (gigacalorie). It is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of trinitrotoluene (TNT). In other words, for each gram of TNT exploded, 4.184 kilojoules (or 4184 joules) of energy are released.This convention intends to compare the destructiveness of an event with that of conventional explosive materials, of which TNT is a typical example, although other conventional explosives such as dynamite contain more energy.A related concept is the physical quantity TNT-equivalent mass (or mass of TNT equivalent), expressed in the ordinary units of mass and its multiples: kilogram (kg), megagram (Mg) or tonne (t), etc.

↑ Return to Menu

Dynamite in the context of Diatomaceous earth

Diatomaceous earth (/ˌd.ətəˈmʃəs/ DY-ə-tə-MAY-shəs), also known as diatomite (/dˈætəmt/ dy-AT-ə-myte), celite, or kieselguhr, is a naturally occurring, soft, siliceous sedimentary rock that can be crumbled into a fine white to off-white powder. It has a particle size ranging from more than 3 mm to less than 1 μm, but typically 10 to 200 μm. Depending on the granularity, this powder can have an abrasive feel, similar to pumice powder, and has a low density as a result of its high porosity. The typical chemical composition of oven-dried diatomaceous earth is 80–90% silica, with 2–4% alumina (attributed mostly to clay minerals), and 0.5–2% iron oxide.

Diatomaceous earth consists of the fossilized remains of diatoms, a type of hard-shelled microalgae, that have accumulated over millions of years. It is used as a filtration aid, mild abrasive in products including metal polishes and toothpaste, mechanical insecticide, absorbent for liquids, matting agent for coatings, reinforcing filler in plastics and rubber, anti-block in plastic films, porous support for chemical catalysts, cat litter, activator in coagulation studies, a stabilizing component of dynamite, a thermal insulator, and a soil for potted plants and trees as in the art of bonsai. It is also used in gas chromatography packed columns made with glass or metal as stationary phase.

↑ Return to Menu

Dynamite in the context of Seismic source

A seismic source is a device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys. A seismic source can be simple, such as dynamite, or it can use more sophisticated technology, such as a specialized air gun. Seismic sources can provide single pulses or continuous sweeps of energy, generating seismic waves, which travel through a medium such as water or layers of rocks. Some of the waves then reflect and refract and are recorded by receivers, such as geophones or hydrophones.

Seismic sources may be used to investigate shallow subsoil structure, for engineering site characterization, or to study deeper structures, either in the search for petroleum and mineral deposits, or to map subsurface faults or for other scientific investigations. The returning signals from the sources are detected by seismic sensors (geophones or hydrophones) in known locations relative to the position of the source. The recorded signals are then subjected to specialist processing and interpretation to yield comprehensible information about the subsurface.

↑ Return to Menu

Dynamite in the context of Tovex

Tovex (also known as Trenchrite, Seismogel, and Seismopac) is a water-gel explosive composed of ammonium nitrate and methylammonium nitrate that has several advantages over traditional dynamite, including lower toxicity and safer manufacture, transport, and storage. It has thus almost entirely replaced dynamite.There are numerous versions ranging from shearing charges to aluminized common blasting agents. Tovex is used by 80% of international oil companies for seismic exploration.

↑ Return to Menu