Dwarf planet in the context of Collisional family


Dwarf planet in the context of Collisional family

Dwarf planet Study page number 1 of 7

Play TriviaQuestions Online!

or

Skip to study material about Dwarf planet in the context of "Collisional family"


⭐ Core Definition: Dwarf planet

A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be gravitationally rounded, but insufficient to achieve orbital dominance like the eight classical planets of the Solar System. The prototypical dwarf planet is Pluto, which for decades was regarded as a planet before the "dwarf" concept was adopted in 2006.Many planetary geologists consider dwarf planets and planetary-mass moons to be planets, but since 2006 the IAU and many astronomers have excluded them from the roster of planets.

Dwarf planets are capable of being geologically active, an expectation that was borne out in 2015 by the Dawn mission to Ceres and the New Horizons mission to Pluto. Planetary geologists are therefore particularly interested in them.

↓ Menu
HINT:

In this Dossier

Dwarf planet in the context of Natural satellite

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

In the Solar System, there are six planetary satellite systems, altogether comprising 419 natural satellites with confirmed orbits. Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites: Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, and Eris. As of January 2022, there are 447 other minor planets known to have natural satellites.

View the full Wikipedia page for Natural satellite
↑ Return to Menu

Dwarf planet in the context of Asteroid

An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the inner Solar System or is co-orbital with Jupiter (Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into C-type (carbonaceous), M-type (metallic), or S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.

Of the roughly one million known asteroids, the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 astronomical units (AU) from the Sun, in a region known as the main asteroid belt. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun.

View the full Wikipedia page for Asteroid
↑ Return to Menu

Dwarf planet in the context of Atmosphere

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

View the full Wikipedia page for Atmosphere
↑ Return to Menu

Dwarf planet in the context of Polar ice cap

A polar ice cap or polar cap is a high-latitude region of a planet, dwarf planet, or natural satellite that is covered in ice.

There are no requirements with respect to size or composition for a body of ice to be termed a polar ice cap, nor any geological requirement for it to be over land, but only that it must be a body of solid phase matter in the polar region. This causes the term "polar ice cap" to be something of a misnomer, as the term ice cap itself is applied more narrowly to bodies that are over land, and cover less than 50,000 km: larger bodies are referred to as ice sheets.

View the full Wikipedia page for Polar ice cap
↑ Return to Menu

Dwarf planet in the context of Moon

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on their facing sides. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The Moon formed out of material from Earth, ejected by a giant impact into Earth of a hypothesized Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

View the full Wikipedia page for Moon
↑ Return to Menu

Dwarf planet in the context of IAU definition of planet

The International Astronomical Union (IAU) adopted in August 2006 the definition made by Uruguayan astronomers Julio Ángel Fernández and Gonzalo Tancredi that stated, that in the Solar System, a planet is a celestial body that:

  1. is in orbit around the Sun,
  2. has sufficient mass to assume hydrostatic equilibrium (a nearly round shape), and
  3. has "cleared the neighbourhood" around its orbit.

A non-satellite body fulfilling only the first two of these criteria (such as Pluto, which had hitherto been considered a planet) is classified as a dwarf planet. According to the IAU, "planets and dwarf planets are two distinct classes of objects" – in other words, "dwarf planets" are not planets. A non-satellite body fulfilling only the first criterion is termed a small Solar System body (SSSB). An alternate proposal included dwarf planets as a subcategory of planets, but IAU members voted against this proposal. The decision was a controversial one, and has drawn both support and criticism from astronomers.

View the full Wikipedia page for IAU definition of planet
↑ Return to Menu

Dwarf planet in the context of Planetary science

Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in sizes from micrometeoroids to huge gas giants, with the aim of determining their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve combinations of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

View the full Wikipedia page for Planetary science
↑ Return to Menu

Dwarf planet in the context of Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies'".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, Quaoar, Orcus, Sedna, Gonggong and Eris and others that may turn out to be dwarf planets.

View the full Wikipedia page for Small Solar System body
↑ Return to Menu

Dwarf planet in the context of Planetary surface

A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

In differentiated bodies, the surface is where the crust meets the planetary boundary layer. Anything below this is regarded as being sub-surface or sub-marine. Most bodies more massive than super-Earths, including stars and giant planets, as well as smaller gas dwarfs, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.

View the full Wikipedia page for Planetary surface
↑ Return to Menu

Dwarf planet in the context of Planetary system

A planetary system consists of a set of non-stellar bodies which are gravitationally bound to and in orbit of a star or star system. Generally speaking, such systems will include planets, and may include other objects such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals, and circumstellar disks. The Solar System is an example of a planetary system, in which Earth, seven other planets, and other celestial objects are bound to and revolve around the Sun. The term exoplanetary system is sometimes used in reference to planetary systems other than the Solar System. By convention planetary systems are named after their host, or parent, star, as is the case with the Solar System being named after "Sol" (Latin for sun).

As of 30 October 2025, there are 6,128 confirmed exoplanets in 4,584 planetary systems, with 1,017 systems having more than one planet. Debris disks are known to be common while other objects are more difficult to observe.

View the full Wikipedia page for Planetary system
↑ Return to Menu

Dwarf planet in the context of Hydrostatic equilibrium

In fluid mechanics, hydrostatic equilibrium, also called hydrostatic balance and hydrostasy, is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the atmosphere of Earth into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

Hydrostatic equilibrium is the distinguishing criterion between dwarf planets and small solar system bodies, and features in astrophysics and planetary geology. Said qualification of equilibrium indicates that the shape of the object is symmetrically rounded, mostly due to rotation, into an ellipsoid, where any irregular surface features are consequent to a relatively thin solid crust. In addition to the Sun, there are a dozen or so equilibrium objects confirmed to exist in the Solar System.

View the full Wikipedia page for Hydrostatic equilibrium
↑ Return to Menu

Dwarf planet in the context of Orcus (dwarf planet)

Orcus (minor-planet designation: 90482 Orcus) is a dwarf planet located in the Kuiper belt, with one large moon, Vanth. It has an estimated diameter of 870 to 960 km (540 to 600 mi), comparable to the Inner Solar System dwarf planet Ceres. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color, and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

Orcus is a plutino, a trans-Neptunian object that is locked in a 2:3 orbital resonance with the ice giant Neptune, making two revolutions around the Sun to every three of Neptune's. This is much like Pluto, except that the phase of Orcus's orbit is opposite to Pluto's: Orcus is at aphelion (most recently in 2019) around when Pluto is at perihelion (most recently in 1989) and vice versa. Orcus is the second-largest known plutino, after Pluto itself. The perihelion of Orcus's orbit is around 120° from that of Pluto, while the eccentricities and inclinations are similar. Because of these similarities and contrasts, along with its large moon Vanth that can be compared to Pluto's large moon Charon, Orcus has been dubbed the "anti-Pluto". This was a major consideration in selecting its name, as the deity Orcus was the Roman/Etruscan equivalent of the Roman/Greek Pluto.

View the full Wikipedia page for Orcus (dwarf planet)
↑ Return to Menu

Dwarf planet in the context of Moons of Pluto

There are five known moons of the dwarf planet Pluto. In order of distance from Pluto, they are Charon, Styx, Nix, Kerberos, and Hydra. Charon, the largest, is mutually tidally locked with Pluto, and is massive enough that Pluto and Charon are sometimes considered a binary dwarf planet.

View the full Wikipedia page for Moons of Pluto
↑ Return to Menu

Dwarf planet in the context of Moons of Haumea

The dwarf planet Haumea has two known moons, Hiʻiaka and Namaka, named after Hawaiian goddesses. These small moons were discovered in 2005, from observations of Haumea made at the large telescopes of the W. M. Keck Observatory in Hawaii.

Haumea's moons are unusual in a number of ways. They are thought to be part of its extended collisional family, which formed billions of years ago from icy debris after a large impact disrupted Haumea's ice mantle. Hiʻiaka, the larger, outermost moon, has large amounts of pure water ice on its surface, which is rare among Kuiper belt objects. Namaka, about one tenth the mass, has an orbit with surprising dynamics: it is unusually eccentric and appears to be greatly influenced by both the elongated shape of Haumea and by the larger satellite.

View the full Wikipedia page for Moons of Haumea
↑ Return to Menu

Dwarf planet in the context of Quaoar

Quaoar (minor-planet designation: 50000 Quaoar) is a ringed dwarf planet in the Kuiper belt, a band of icy planetesimals beyond Neptune. It has a slightly ellipsoidal shape with an average diameter of 1,100 km (680 mi), about half the size of the dwarf planet Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at Palomar Observatory on 4 June 2002. Quaoar has a reddish surface made of crystalline water ice, tholins, and traces of frozen methane.

Quaoar has two thin rings orbiting outside its Roche limit, which defied initial theoretical expectations that rings outside the Roche limit should be unstable. Quaoar has one moon named Weywot and another unnamed moon that has not yet been confirmed. It is believed that Quaoar's elongated shape, gravitational influence of its moons, and extremely cold temperature help keep its rings stable.

View the full Wikipedia page for Quaoar
↑ Return to Menu

Dwarf planet in the context of Makemake

Makemake (minor-planet designation: 136472 Makemake) is a dwarf planet in the Kuiper belt, a disk of icy bodies beyond the orbit of Neptune. It is the fourth largest trans-Neptunian object and the largest member of the classical Kuiper belt, having a diameter 60% that of Pluto. It was discovered on March 31, 2005 by American astronomers Michael E. ("Mike") Brown, Chad Trujillo, and David Rabinowitz at Palomar Observatory. As one of the largest objects found by this team, the discovery of Makemake contributed to the reclassification of Pluto as a dwarf planet in 2006.

Makemake is similar to Pluto with respect to its surface: it is highly reflective, covered largely by frozen methane, and stained reddish-brown by tholins. Makemake has one known satellite, which has not been named. The orbit of this satellite suggests that Makemake's rotation has a high axial tilt, which implies that it experiences extreme seasons. Makemake shows evidence of geochemical activity and cryovolcanism, which has led scientists to suspect that it might harbor a subsurface ocean of liquid water. Gaseous methane has been found on Makemake, although it is unclear whether it is contained in an atmosphere or comes from temporary outgassing.

View the full Wikipedia page for Makemake
↑ Return to Menu

Dwarf planet in the context of Gonggong (dwarf planet)

Gonggong (minor-planet designation: 225088 Gonggong) is a dwarf planet and a member of the scattered disc beyond Neptune. It has a highly eccentric and inclined orbit during which it ranges from 33–101 astronomical units (4.9–15.1 billion kilometers; 3.1–9.4 billion miles) from the Sun. As of 2019, its distance from the Sun is 88 AU (13.2×10^ km; 8.2×10^ mi), and it is the sixth-farthest known Solar System object. According to the Deep Ecliptic Survey, Gonggong is in a 3:10 orbital resonance with Neptune, in which it completes three orbits around the Sun for every ten orbits completed by Neptune. Gonggong was discovered in July 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory, and the discovery was announced in January 2009.

At approximately 1,230 km (760 mi) in diameter, Gonggong is similar in size to Pluto's moon Charon, making it the fifth-largest known trans-Neptunian object (apart possibly from Charon). It may be sufficiently massive to be in hydrostatic equilibrium and therefore a dwarf planet. Gonggong's large mass makes retention of a tenuous atmosphere of methane just possible, though such an atmosphere would slowly escape into space. The object is named after Gònggōng, a Chinese water god responsible for chaos, floods and the tilt of the Earth. The name was chosen by its discoverers in 2019, when they hosted an online poll for the general public to help choose a name for the object, and the name Gonggong won.

View the full Wikipedia page for Gonggong (dwarf planet)
↑ Return to Menu

Dwarf planet in the context of Eris (dwarf planet)

Eris (minor-planet designation: 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. It was named in September 2006 after the Greco–Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive in the Solar System (counting moons). It is also the largest known object in the Solar System that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometres (1,445 ± 7 mi) in diameter; its mass is 0.28% that of the Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a surface area that is comparable to that of Russia or South America.

Eris has one large known moon, Dysnomia. In February 2016, Eris's distance from the Sun was 96.3 AU (14.41 billion km; 8.95 billion mi), more than three times that of Neptune or Pluto. With the exception of long-period comets, Eris and Dysnomia were the most distant known natural objects in the Solar System until the discovery of 2018 AG37 and 2018 VG18 in 2018.

View the full Wikipedia page for Eris (dwarf planet)
↑ Return to Menu