Dust explosion in the context of "Combustible"

Play Trivia Questions online!

or

Skip to study material about Dust explosion in the context of "Combustible"

Ad spacer

⭐ Core Definition: Dust explosion

A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.

Dust explosions are a frequent hazard in coal mines, grain elevators and silos, and other industrial environments. They are also commonly used by special effects artists, filmmakers, and pyrotechnicians, given their spectacular appearance and ability to be safely contained under certain carefully controlled conditions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Dust explosion in the context of Combustible

A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.

The degree of flammability in air depends largely upon the volatility of the material – this is related to its composition-specific vapour pressure, which is temperature dependent. The quantity of vapour produced can be enhanced by increasing the surface area of the material forming a mist or dust. Take wood as an example. Finely divided wood dust can undergo explosive flames and produce a blast wave. A piece of paper (made from pulp) catches on fire quite easily. A heavy oak desk is much harder to ignite, even though the wood fibre is the same in all three materials.

↓ Explore More Topics
In this Dossier

Dust explosion in the context of Combustibility and flammability

A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.

The degree of flammability in air depends largely upon the volatility of the material – this is related to its composition-specific vapor pressure, which is temperature dependent. The quantity of vapor produced can be enhanced by increasing the surface area of the material forming a mist or dust. Take wood as an example. Finely divided wood dust can undergo explosive flames and produce a blast wave. A piece of paper (made from pulp) catches on fire quite easily. A heavy oak desk is much harder to ignite, even though the wood fibre is the same in all three materials.

↑ Return to Menu

Dust explosion in the context of Pyréolophore

The Pyréolophore (French: [piʁeɔlɔfɔʁ]) was an early internal combustion engine and the first made to power a boat. It was invented in the early 19th century in Chalon-sur-Saône, France, by the Niépce brothers: Nicéphore (who went on to invent photography) and Claude. In 1807 the brothers ran a prototype internal combustion engine, and on 20 July 1807 a patent was granted by Napoleon Bonaparte after it had successfully powered a boat upstream on the river Saône.

The Pyréolophore ran on what were believed to be "controlled dust explosions" of various experimental fuels. The fuels included mixtures of lycopodium powder (the spores of Lycopodium, or clubmoss), finely crushed coal dust, and resin.

↑ Return to Menu

Dust explosion in the context of Air–fuel ratio

Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion (e.g., a dust explosion). The air–fuel ratio determines whether a mixture is combustible at all, how much energy is being released, and how much unwanted pollutants are produced in the reaction. Typically a range of air to fuel ratios exists, outside of which ignition will not occur. These are known as the lower and upper explosive limits.

In an internal combustion engine or industrial furnace, the air–fuel ratio is an important measure for anti-pollution and performance-tuning reasons. If exactly enough air is provided to completely burn all of the fuel (stoichiometric combustion), the ratio is known as the stoichiometric mixture, often abbreviated to stoich. Ratios lower than stoichiometric (where the fuel is in excess) are considered "rich". Rich mixtures are less efficient, but may produce more power and burn cooler. Ratios higher than stoichiometric (where the air is in excess) are considered "lean". Lean mixtures are more efficient but may cause higher temperatures, which can lead to the formation of nitrogen oxides. Some engines are designed with features to allow lean-burn. For precise air–fuel ratio calculations, the oxygen content of combustion air should be specified because of different air density due to different altitude or intake air temperature, possible dilution by ambient water vapor, or enrichment by oxygen additions.

↑ Return to Menu