Duality (order theory) in the context of Partially ordered set


Duality (order theory) in the context of Partially ordered set

Duality (order theory) Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Duality (order theory) in the context of "Partially ordered set"


⭐ Core Definition: Duality (order theory)

In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P or P. This dual order P is defined to be the same set, but with the inverse order, i.e. xy holds in P if and only if yx holds in P. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for P upside down, will indeed yield a partially ordered set. In a broader sense, two partially ordered sets are also said to be duals if they are dually isomorphic, i.e. if one poset is order isomorphic to the dual of the other.

The importance of this simple definition stems from the fact that every definition and theorem of order theory can readily be transferred to the dual order. Formally, this is captured by the Duality Principle for ordered sets:

↓ Menu
HINT:

In this Dossier

Duality (order theory) in the context of Supremum

The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.

View the full Wikipedia page for Supremum
↑ Return to Menu

Duality (order theory) in the context of Join (mathematics)

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms.

View the full Wikipedia page for Join (mathematics)
↑ Return to Menu

Duality (order theory) in the context of Semilattice

In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order.

View the full Wikipedia page for Semilattice
↑ Return to Menu

Duality (order theory) in the context of Greatest and least elements

In mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually, that is, it is an element of that is smaller than every other element of

View the full Wikipedia page for Greatest and least elements
↑ Return to Menu

Duality (order theory) in the context of Minimal element

In mathematics, especially in order theory, a maximal element of a subset of some preordered set is an element of that is not smaller than any other element in . A minimal element of a subset of some preordered set is defined dually as an element of that is not greater than any other element in .

The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of and the minimum of is again defined dually. In the particular case of a partially ordered set, while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements. Specializing further to totally ordered sets, the notions of maximal element and maximum coincide, and the notions of minimal element and minimum coincide.

View the full Wikipedia page for Minimal element
↑ Return to Menu

Duality (order theory) in the context of Upper and lower bounds

In mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

View the full Wikipedia page for Upper and lower bounds
↑ Return to Menu

Duality (order theory) in the context of Filter (mathematics)

In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal.

Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic.

View the full Wikipedia page for Filter (mathematics)
↑ Return to Menu