Supremum in the context of "Duality (order theory)"

Play Trivia Questions online!

or

Skip to study material about Supremum in the context of "Duality (order theory)"

Ad spacer

⭐ Core Definition: Supremum

The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Supremum in the context of Lattice (order)

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These lattice-like structures all admit order-theoretic as well as algebraic descriptions.

↑ Return to Menu

Supremum in the context of Join (mathematics)

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms.

↑ Return to Menu

Supremum in the context of Heyting algebra

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab called implication such that (ca) ≤ b is equivalent to c ≤ (ab). In a Heyting algebra a ≤ b can be found to be equivalent to 1 ≤ a → b; i.e. if a ≤ b then a proves b. From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic.

Heyting algebras are distributive lattices. Every Boolean algebra is a Heyting algebra when ab is defined as ¬ab, as is every complete distributive lattice satisfying a one-sided infinite distributive law when ab is taken to be the supremum of the set of all c for which cab. In the finite case, every nonempty distributive lattice, in particular every nonempty finite chain, is automatically complete and completely distributive, and hence a Heyting algebra.

↑ Return to Menu

Supremum in the context of Stretch factor

The stretch factor (i.e., bilipschitz constant) of an embedding measures the factor by which the embedding distorts distances. Suppose that one metric space S is embedded into another metric space T by a metric map, a continuous one-to-one function f that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in S. Any pair of points (x,y) in S has both an intrinsic distance, the distance from x to y in S, and a smaller extrinsic distance, the distance from f(x) to f(y) in T. The stretch factor of the pair is the ratio between these two distances, d(f(x),f(y))/d(x,y). The stretch factor of the whole mapping is the supremum of the stretch factors of all pairs of points. The stretch factor has also been called the distortion or dilation of the mapping.

The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane. In this case, the embedded metric S is a finite metric space, whose distances are shortest path lengths in a graph, and the metric T into which S is embedded is the Euclidean plane. When the graph and its embedding are fixed, but the graph edge weights can vary, the stretch factor is minimized when the weights are exactly the Euclidean distances between the edge endpoints. Research in this area has focused on finding sparse graphs for a given point set that have low stretch factor.

↑ Return to Menu

Supremum in the context of Large countable ordinals

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations (see ordinal analysis). However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not (for reasons somewhat analogous to the unsolvability of the halting problem); various more-concrete ways of defining ordinals that definitely have notations are available.

Since there are only countably many notations, all ordinals with notations are exhausted well below the first uncountable ordinal ω1; their supremum is called Church–Kleene ω1 or ω
1
(not to be confused with the first uncountable ordinal, ω1), described below. Ordinal numbers below ω
1
are the recursive ordinals (see below). Countable ordinals larger than this may still be defined, but do not have notations.

↑ Return to Menu