Dual polyhedron in the context of Midsphere


Dual polyhedron in the context of Midsphere

Dual polyhedron Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Dual polyhedron in the context of "Midsphere"


⭐ Core Definition: Dual polyhedron

In geometry, every polyhedron is associated with a second dual structure, wherein the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedra – the (convex) Platonic solids and (star) Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent [...]), and vice versa. The dual of an isotoxal polyhedron (one in which any two edges are equivalent [...]) is also isotoxal.

↓ Menu
HINT:

In this Dossier

Dual polyhedron in the context of Rhombicuboctahedron

In geometry, the rhombicuboctahedron is an Archimedean solid with 26 faces, consisting of 8 equilateral triangles and 18 squares. It was named by Johannes Kepler in his 1618 Harmonices Mundi, being short for truncated cuboctahedral rhombus, with cuboctahedral rhombus being his name for a rhombic dodecahedron.

The rhombicuboctahedron is an Archimedean solid, and its dual is a Catalan solid, the deltoidal icositetrahedron. The elongated square gyrobicupola is a polyhedron that is similar to a rhombicuboctahedron, but it is not an Archimedean solid because it is not vertex-transitive. The rhombicuboctahedron is found in diverse cultures in architecture, toys, the arts, and elsewhere.

View the full Wikipedia page for Rhombicuboctahedron
↑ Return to Menu

Dual polyhedron in the context of Polyhedra

In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-)  'many' and ἕδρον (-hedron)  'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term polyhedron is often used to refer implicitly to the whole structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices.

There are many definitions of polyhedra, not all of which are equivalent. Under any definition, polyhedra are typically understood to generalize two-dimensional polygons and to be the three-dimensional specialization of polytopes (a more general concept in any number of dimensions). Polyhedra have several general characteristics that include the number of faces, topological classification by Euler characteristic, duality, vertex figures, surface area, volume, interior lines, Dehn invariant, and symmetry. A symmetry of a polyhedron means that the polyhedron's appearance is unchanged by the transformation such as rotating and reflecting.

View the full Wikipedia page for Polyhedra
↑ Return to Menu

Dual polyhedron in the context of Cuboctahedron

A cuboctahedron, rectified cube, or rectified octahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.

View the full Wikipedia page for Cuboctahedron
↑ Return to Menu

Dual polyhedron in the context of Octahedral symmetry

A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

The group of orientation-preserving symmetries is S4, the symmetric group or the group of permutations of four objects, since there is exactly one such symmetry for each permutation of the four diagonals of the cube.

View the full Wikipedia page for Octahedral symmetry
↑ Return to Menu

Dual polyhedron in the context of Regular dodecahedron

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron (a polyhedron with 12 faces) composed of regular pentagonal faces, three meeting at each vertex. It is one of the Platonic solids, described in Plato's dialogues as the shape of the universe itself. Johannes Kepler used the dodecahedron in his 1596 model of the Solar System. However, the dodecahedron and other Platonic solids had already been described by other philosophers since antiquity.

The regular dodecahedron is a truncated trapezohedron because it is the result of truncating axial vertices of a pentagonal trapezohedron. It is also a Goldberg polyhedron because it is the initial polyhedron to construct new polyhedra by the process of chamfering. It has a relation with other Platonic solids, one of them is the regular icosahedron as its dual polyhedron. Other new polyhedra can be constructed by using a regular dodecahedron.

View the full Wikipedia page for Regular dodecahedron
↑ Return to Menu

Dual polyhedron in the context of Regular icosahedron

The regular icosahedron (or simply icosahedron) is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

Many polyhedra and other related figures are constructed from the regular icosahedron, including its 59 stellations. The great dodecahedron, one of the Kepler–Poinsot polyhedra, is constructed by either stellation of the regular dodecahedron or faceting of the icosahedron. Some of the Johnson solids can be constructed by removing the pentagonal pyramids. The regular icosahedron's dual polyhedron is the regular dodecahedron, and their relation has a historical background in the comparison mensuration. It is analogous to a four-dimensional polytope, the 600-cell.

View the full Wikipedia page for Regular icosahedron
↑ Return to Menu

Dual polyhedron in the context of Rhombic dodecahedron

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appear in nature (such as in the garnet crystal), the architectural philosophies, practical usages, and toys.

View the full Wikipedia page for Rhombic dodecahedron
↑ Return to Menu

Dual polyhedron in the context of Catalan solid

The Catalan solids are the dual polyhedra of Archimedean solids. The Archimedean solids are thirteen highly-symmetric polyhedra with regular faces and symmetric vertices. The faces of the Catalan solids correspond by duality to the vertices of Archimedean solids, and vice versa.

View the full Wikipedia page for Catalan solid
↑ Return to Menu

Dual polyhedron in the context of Icosahedral symmetry

In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron.

Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120. The full symmetry group is the Coxeter group of type H3. It may be represented by Coxeter notation [5,3] and Coxeter diagram . The set of rotational symmetries forms a subgroup that is isomorphic to the alternating group A5 on 5 letters.

View the full Wikipedia page for Icosahedral symmetry
↑ Return to Menu

Dual polyhedron in the context of Rhombic triacontahedron

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron and can be seen as an elongated rhombic icosahedron.

The ratio of the long diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 arctan(1/φ) = arctan(2), or approximately 63.43°. A rhombus so obtained is called a golden rhombus.

View the full Wikipedia page for Rhombic triacontahedron
↑ Return to Menu

Dual polyhedron in the context of Inscribed sphere

In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and is dual to the dual polyhedron's circumsphere.

The radius of the sphere inscribed in a polyhedron P is called the inradius of P.

View the full Wikipedia page for Inscribed sphere
↑ Return to Menu

Dual polyhedron in the context of Pentagonal trapezohedron

In geometry, a pentagonal trapezohedron is the third in the infinite family of trapezohedra, face-transitive polyhedra. Its dual polyhedron is the pentagonal antiprism. As a decahedron it has ten faces which are congruent kites.

One particular pentagonal trapezohedron can be decomposed into two pentagonal pyramids and a regular dodecahedron in the middle.

View the full Wikipedia page for Pentagonal trapezohedron
↑ Return to Menu

Dual polyhedron in the context of Goldberg polyhedron

In mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them. If the vertices are not constrained to a sphere, the polyhedron can be constructed with planar equilateral (but not in general equiangular) faces.

View the full Wikipedia page for Goldberg polyhedron
↑ Return to Menu

Dual polyhedron in the context of Simplicial polytope

In geometry, a simplicial polytope is a polytope whose facets are all simplices. It is topologically dual to simple polytopes. Polytopes that are both simple and simplicial are either simplices or two-dimensional polygons.

View the full Wikipedia page for Simplicial polytope
↑ Return to Menu