Platonic solid in the context of "Regular icosahedron"

Play Trivia Questions online!

or

Skip to study material about Platonic solid in the context of "Regular icosahedron"

Ad spacer

⭐ Core Definition: Platonic solid

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: a tetrahedron (four faces), a cube (six faces), an octahedron (eight faces), a dodecahedron (twelve faces), and an icosahedron (twenty faces).

Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the Timaeus, that the classical elements were made of these regular solids.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Platonic solid in the context of Theaetetus (mathematician)

Theaetetus of Athens (/ˌθɪˈttəs/; Ancient Greek: Θεαίτητος Theaítētos; c. 417 – c. 369 BCE), possibly the son of Euphronius of the Athenian deme Sunium, was a Greek mathematician. His principal contributions were on irrational lengths, which was included in Book X of Euclid's Elements and proving that there are precisely five regular convex polyhedra. A friend of Socrates and Plato, he is the central character in Plato's eponymous Socratic dialogue.

Theaetetus, like Plato, was a student of the Greek mathematician Theodorus of Cyrene. Cyrene was a prosperous Greek colony on the coast of North Africa, in what is now Libya, on the eastern end of the Gulf of Sidra. Theodorus had explored the theory of incommensurable quantities, and Theaetetus continued those studies with great enthusiasm; specifically, he classified various forms of irrational numbers according to the way they are expressed as square roots. This theory is presented in great detail in Book X of Euclid's Elements.

↑ Return to Menu

Platonic solid in the context of Regular polyhedra

A regular polyhedron is a polyhedron with regular and congruent polygons as faces. Its symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra.

↑ Return to Menu

Platonic solid in the context of Icosahedron

In geometry, an icosahedron (/ˌkɒsəˈhdrən, -kə-, -k-/ or /ˌkɒsəˈhdrən/) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" (/-drə/) or "icosahedrons".

There are infinitely many non-similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the (convex, non-stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles.

↑ Return to Menu

Platonic solid in the context of Octahedral

In geometry, an octahedron (pl.: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

↑ Return to Menu

Platonic solid in the context of Polyhedral map projection

A polyhedral map projection is a map projection based on a spherical polyhedron. Typically, the polyhedron is overlaid on the globe, and each face of the polyhedron is transformed to a polygon or other shape in the plane. The best-known polyhedral map projection is Buckminster Fuller's Dymaxion map. When the spherical polyhedron faces are transformed to the faces of an ordinary polyhedron instead of laid flat in a plane, the result is a polyhedral globe.

Often the polyhedron used is a Platonic solid or Archimedean solid. However, other polyhedra can be used: the AuthaGraph projection makes use of a polyhedron with 96 faces, and the myriahedral projection allows for an arbitrary large number of faces.Although interruptions between faces are common, and more common with an increasing number of faces, some maps avoid them: the Lee conformal projection only has interruptions at its border, and the AuthaGraph projection scales its faces so that the map fills a rectangle without internal interruptions. Some projections can be tesselated to fill the plane, the Lee conformal projection among them.

↑ Return to Menu

Platonic solid in the context of Net (polyhedron)

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane that can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

An early instance of polyhedral nets appears in the works of Albrecht Dürer, whose 1525 book A Course in the Art of Measurement with Compass and Ruler (Unterweysung der Messung mit dem Zyrkel und Rychtscheyd ) included nets for the Platonic solids and several of the Archimedean solids. These constructions were first called nets in 1543 by Augustin Hirschvogel.

↑ Return to Menu

Platonic solid in the context of Cube

A cube is a three-dimensional solid object in geometry. A cube has eight vertices and twelve straight edges of the same length, so that these edges form six square faces of the same size. It is an example of a polyhedron.

The cube is found in many popular cultures, including toys and games, the arts, optical illusions, and architectural buildings. Cubes can be found in crystal structures, science, and technological devices. It is also found in ancient texts, such as Plato's work Timaeus, which described a set of solids now called Platonic solids, associating a cube with the classical element of earth. A cube with unit length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured.

↑ Return to Menu

Platonic solid in the context of Regular dodecahedron

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron (a polyhedron with 12 faces) composed of regular pentagonal faces, three meeting at each vertex. It is one of the Platonic solids, described in Plato's dialogues as the shape of the universe itself. Johannes Kepler used the dodecahedron in his 1596 model of the Solar System. However, the dodecahedron and other Platonic solids had already been described by other philosophers since antiquity.

The regular dodecahedron is a truncated trapezohedron because it is the result of truncating axial vertices of a pentagonal trapezohedron. It is also a Goldberg polyhedron because it is the initial polyhedron to construct new polyhedra by the process of chamfering. It has a relation with other Platonic solids, one of them is the regular icosahedron as its dual polyhedron. Other new polyhedra can be constructed by using a regular dodecahedron.

↑ Return to Menu