Dual polyhedron in the context of "Isogonal figure"

Play Trivia Questions online!

or

Skip to study material about Dual polyhedron in the context of "Isogonal figure"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Dual polyhedron in the context of Rhombicuboctahedron

In geometry, the rhombicuboctahedron is an Archimedean solid with 26 faces, consisting of 8 equilateral triangles and 18 squares. It was named by Johannes Kepler in his 1618 Harmonices Mundi, being short for truncated cuboctahedral rhombus, with cuboctahedral rhombus being his name for a rhombic dodecahedron.

The rhombicuboctahedron is an Archimedean solid, and its dual is a Catalan solid, the deltoidal icositetrahedron. The elongated square gyrobicupola is a polyhedron that is similar to a rhombicuboctahedron, but it is not an Archimedean solid because it is not vertex-transitive. The rhombicuboctahedron is found in diverse cultures in architecture, toys, the arts, and elsewhere.

↑ Return to Menu

Dual polyhedron in the context of Polyhedra

In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-)  'many' and ἕδρον (-hedron)  'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term polyhedron is often used to refer implicitly to the whole structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices.

There are many definitions of polyhedra, not all of which are equivalent. Under any definition, polyhedra are typically understood to generalize two-dimensional polygons and to be the three-dimensional specialization of polytopes (a more general concept in any number of dimensions). Polyhedra have several general characteristics that include the number of faces, topological classification by Euler characteristic, duality, vertex figures, surface area, volume, interior lines, Dehn invariant, and symmetry. A symmetry of a polyhedron means that the polyhedron's appearance is unchanged by the transformation such as rotating and reflecting.

↑ Return to Menu

Dual polyhedron in the context of Cuboctahedron

A cuboctahedron, rectified cube, or rectified octahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.

↑ Return to Menu

Dual polyhedron in the context of Octahedral symmetry

A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

The group of orientation-preserving symmetries is S4, the symmetric group or the group of permutations of four objects, since there is exactly one such symmetry for each permutation of the four diagonals of the cube.

↑ Return to Menu

Dual polyhedron in the context of Regular dodecahedron

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron (a polyhedron with 12 faces) composed of regular pentagonal faces, three meeting at each vertex. It is one of the Platonic solids, described in Plato's dialogues as the shape of the universe itself. Johannes Kepler used the dodecahedron in his 1596 model of the Solar System. However, the dodecahedron and other Platonic solids had already been described by other philosophers since antiquity.

The regular dodecahedron is a truncated trapezohedron because it is the result of truncating axial vertices of a pentagonal trapezohedron. It is also a Goldberg polyhedron because it is the initial polyhedron to construct new polyhedra by the process of chamfering. It has a relation with other Platonic solids, one of them is the regular icosahedron as its dual polyhedron. Other new polyhedra can be constructed by using a regular dodecahedron.

↑ Return to Menu

Dual polyhedron in the context of Regular icosahedron

The regular icosahedron (or simply icosahedron) is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

Many polyhedra and other related figures are constructed from the regular icosahedron, including its 59 stellations. The great dodecahedron, one of the Kepler–Poinsot polyhedra, is constructed by either stellation of the regular dodecahedron or faceting of the icosahedron. Some of the Johnson solids can be constructed by removing the pentagonal pyramids. The regular icosahedron's dual polyhedron is the regular dodecahedron, and their relation has a historical background in the comparison mensuration. It is analogous to a four-dimensional polytope, the 600-cell.

↑ Return to Menu

Dual polyhedron in the context of Rhombic dodecahedron

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appear in nature (such as in the garnet crystal), the architectural philosophies, practical usages, and toys.

↑ Return to Menu