Drug carrier in the context of "Liberation (pharmacology)"

Play Trivia Questions online!

or

Skip to study material about Drug carrier in the context of "Liberation (pharmacology)"

Ad spacer

⭐ Core Definition: Drug carrier

A drug carrier or drug vehicle is a substrate used in the process of drug delivery which serves to improve the selectivity, effectiveness, and/or safety of drug administration. Drug carriers are primarily used to control the release of drugs into systemic circulation. This can be accomplished either by slow release of a particular drug over a long period of time (typically diffusion) or by triggered release at the drug's target by some stimulus, such as changes in pH, application of heat, and activation by light. Drug carriers are also used to improve the pharmacokinetic properties, specifically the bioavailability, of many drugs with poor water solubility and/or membrane permeability.

A wide variety of drug carrier systems have been developed and studied, each of which has unique advantages and disadvantages. Some of the more popular types of drug carriers include liposomes, polymeric micelles, microspheres, and nanoparticles. Different methods of attaching the drug to the carrier have been implemented, including adsorption, integration into the bulk structure, encapsulation, and covalent bonding. Different types of drug carrier utilize different methods of attachment, and some carriers can even implement a variety of attachment methods.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Drug carrier in the context of Liberation (pharmacology)

Release (Liberation) is the first step in the process by which medication enters the body and liberates the active ingredient that has been administered. The pharmaceutical drug must separate from the vehicle or the excipient that it was mixed with during manufacture. Some authors split the process of liberation into three steps: disintegration, disaggregation and dissolution. A limiting factor in the adsorption of pharmaceutical drugs is the degree to which they are ionized, as cell membranes are relatively impermeable to ionized molecules.

The characteristics of a medication's excipient play a fundamental role in creating a suitable environment for the correct absorption of a drug. This can mean that the same dose of a drug in different forms can have different bioequivalence, as they yield different plasma concentrations and therefore have different therapeutic effects. Dosage forms with modified release (such as delayed or extended release) allow this difference to be usefully applied.

↓ Explore More Topics
In this Dossier

Drug carrier in the context of Drug delivery

Drug delivery involves various methods and technologies designed to transport pharmaceutical compounds to their target sites helping therapeutic effect. It involves principles related to drug preparation, route of administration, site-specific targeting, metabolism, and toxicity all aimed to optimize efficacy and safety, while improving patient convenience and compliance. A key goal of drug delivery is to modify a drug's pharmacokinetics and specificity by combining it with different excipients, drug carriers, and medical devices designed to control its distribution and activity in the body. Enhancing bioavailability and prolonging duration of action are essential strategies for improving therapeutic outcomes, particularly in chronic disease management. Additionally, some research emphasizes on improving safety for the individuals administering the medication. For example, microneedle patches have been developed for vaccines and drug delivery to minimize the risk of needlestick injuries.

Drug delivery is closely linked with dosage form and route of administration, the latter of which is sometimes considered to be part of the definition. Although the terms are often used interchangeably, they represent distinct concepts. The route of administration refers specifically to the path by which a drug enters the body, such as oral, parenteral, or transdermal. In contrast, the dosage form refers to the physical form in which the drug is manufactured and delivered, such as tablets, capsules, patches, inhalers or injectable solutions. These are various dosage forms and technologies which include but not limited to nanoparticles, liposomes, microneedles, and hydrogels that can be used to enhance therapeutic efficacy and safety. The same route can accommodate multiple dosage forms; for example, the oral route may involve tablet, capsule, or liquid suspension. While the transdermal route may use a patch, gel, or cream. Drug delivery incorporates both of these concepts while encompassing a broader scope, including the design and engineering of systems that operate within or across these routes. Common routes of administration include oral, parenteral (injected), sublingual, topical, transdermal, nasal, ocular, rectal, and vaginal. However, modern drug delivery continue to expand the possibilities of these routes through novel and hybrid approaches.

↑ Return to Menu