Double refraction in the context of "Augustin-Jean Fresnel"

Play Trivia Questions online!

or

Skip to study material about Double refraction in the context of "Augustin-Jean Fresnel"

Ad spacer

⭐ Core Definition: Double refraction

Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefringent or birefractive. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

Birefringence is responsible for the phenomenon of double refraction whereby a ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by Danish scientist Rasmus Bartholin in 1669, who observed it in Iceland spar (calcite) crystals which have one of the strongest birefringences. In the 19th century Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave with field components in transverse polarization (perpendicular to the direction of the wave vector).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

šŸ‘‰ Double refraction in the context of Augustin-Jean Fresnel

Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, fully supplanting Newton's corpuscular theory, from the late 1830sā€Š until the end of the 19th century. He is perhaps better known for inventing the catadioptric (reflective/refractive) Fresnel lens and for pioneering the use of "stepped" lenses to extend the visibility of lighthouses, saving countless lives at sea. The simpler dioptric (purely refractive) stepped lens, first proposed by Count Buffonā€Š and independently reinvented by Fresnel, is used in screen magnifiers and in condenser lenses for overhead projectors.

Fresnel gave the first satisfactory explanation of diffraction by straight edges, including the first satisfactory wave-based explanation of rectilinear propagation. By further supposing that light waves are purely transverse, Fresnel explained the nature of polarization. He then worked on double refraction.

↓ Explore More Topics
In this Dossier