Double integral in the context of "Surface integral"

Play Trivia Questions online!

or

Skip to study material about Double integral in the context of "Surface integral"

Ad spacer

⭐ Core Definition: Double integral

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Double integral in the context of Surface integral

In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate over this surface a scalar field (that is, a function of position which returns a scalar as a value), or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.

Surface integrals have applications in physics, particularly in the classical theories of electromagnetism and fluid mechanics.

↓ Explore More Topics
In this Dossier

Double integral in the context of Fubini's theorem

Fubini's theorem is a theorem in measure theory that gives conditions under which a double integral can be computed as an iterated integral, i.e. by integrating in one variable at a time. Intuitively, just as the volume of a loaf of bread is the same whether one sums over standard slices or over long thin slices, the value of a double integral does not depend on the order of integration when the hypotheses of the theorem are satisfied. The theorem is named after Guido Fubini, who proved a general result in 1907; special cases were known earlier through results such as Cavalieri's principle, which was used by Leonhard Euler.

More formally, the theorem states that if a function is Lebesgue integrable on a rectangle , then one can evaluate the double integral as an iterated integral: This formula is generally not true for the Riemann integral (however, it is true if the function is continuous on the rectangle; in multivariable calculus, this weaker result is sometimes also called Fubini's theorem).

↑ Return to Menu