Double fertilization in the context of "Triploid"

Play Trivia Questions online!

or

Skip to study material about Double fertilization in the context of "Triploid"

Ad spacer

⭐ Core Definition: Double fertilization

Double fertilization or double fertilisation (see spelling differences) is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate (unless a type of self-incompatibility that acts in the stigma occurs in that particular species and is activated), forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

The mature embryonic sac of an unfertilized ovule is 7-cellular and 8-nucleate. It is arranged in the form of 3+1+3 (from top to bottom) i.e. 3 antipodal cells, 1 central cell (binucleate), 2 synergids & 1 egg cell. One sperm fertilizes the egg cell and the other sperm fuses with the two polar nuclei of the large central cell of the megagametophyte. The haploid sperm and haploid egg fuse to form a diploid zygote, the process being called syngamy, while the other sperm and the diploid central cell fuse to form a triploid primary endosperm cell (triple fusion). Some plants may form polyploid nuclei. The large cell of the gametophyte will then develop into the endosperm, a nutrient-rich tissue which nourishes the developing embryo. The ovary, surrounding the ovules, develops into the fruit, which protects the seeds and may function to disperse them.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Double fertilization in the context of Endosperm

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid (meaning three chromosome sets per nucleus) in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread (the rest of the grain is included as well in whole wheat flour), while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as certain orchids, lack endosperm in their seeds.

Ancestral flowering plants have seeds with small embryos and abundant endosperm. In some modern flowering plants the embryo occupies most of the seed and the endosperm is non-developed or consumed before the seed matures. In other flowering plant taxa, the Poaceae for example, the endosperm is greatly developed.

↑ Return to Menu

Double fertilization in the context of Aleurone

Aleurone (from Greek aleuron, flour) is a protein found in protein granules of maturing seeds and tubers. The term also describes one of the two major cell types of the endosperm, the aleurone layer. The aleurone layer is the outermost layer of the endosperm, followed by the inner starchy endosperm. This layer of cells is sometimes referred to as the peripheral endosperm. It lies between the pericarp and the hyaline layer of the endosperm. Unlike the cells of the starchy endosperm, aleurone cells remain alive at maturity. The ploidy of the aleurone is (3n) [as a result of double fertilization].

↑ Return to Menu