Self-incompatibility in the context of "Double fertilization"

Play Trivia Questions online!

or

Skip to study material about Self-incompatibility in the context of "Double fertilization"

Ad spacer

⭐ Core Definition: Self-incompatibility

Self-incompatibility (SI) is a general name for several genetic mechanisms that prevent self-fertilization in sexually reproducing organisms, and thus encourage outcrossing and allogamy. It is contrasted with separation of sexes among individuals (dioecy), and their various modes of spatial (herkogamy) and temporal (dichogamy) separation.

SI is best-studied and particularly common in flowering plants, although it is present in other groups, including sea squirts and fungi. In plants with SI, when a pollen grain produced in a plant reaches a stigma of the same plant or another plant with a matching allele or genotype, the process of pollen germination, pollen-tube growth, ovule fertilization, or embryo development is inhibited, and consequently no seeds are produced. SI is one of the most important means of preventing inbreeding and promoting the generation of new genotypes in plants and it is considered one of the causes of the spread and success of angiosperms on Earth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Self-incompatibility in the context of Dioecy

Dioecy (/dˈsi/ dy-EE-see; from Ancient Greek διοικία dioikía 'two households'; adj. dioecious, /dˈʃ(i)əs/ dy-EE-sh(ee-)əs) is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly (in animals) or indirectly (in seed plants). Dioecious reproduction is biparental reproduction. Dioecy has costs, since only the female part of the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

↑ Return to Menu

Self-incompatibility in the context of Double fertilisation

Double fertilization or double fertilisation (see spelling differences) is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate (unless a type of self-incompatibility that acts in the stigma occurs in that particular species and is activated), forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

The mature embryonic sac of an unfertilized ovule is 7-cellular and 8-nucleate. It is arranged in the form of 3+1+3 (from top to bottom) i.e. 3 antipodal cells, 1 central cell (binucleate), 2 synergids & 1 egg cell. One sperm fertilizes the egg cell and the other sperm fuses with the two polar nuclei of the large central cell of the megagametophyte. The haploid sperm and haploid egg fuse to form a diploid zygote, the process being called syngamy, while the other sperm and the diploid central cell fuse to form a triploid primary endosperm cell (triple fusion). Some plants may form polyploid nuclei. The large cell of the gametophyte will then develop into the endosperm, a nutrient-rich tissue which nourishes the developing embryo. The ovary, surrounding the ovules, develops into the fruit, which protects the seeds and may function to disperse them.

↑ Return to Menu