Dormancy in the context of "Suspended animation"

Play Trivia Questions online!

or

Skip to study material about Dormancy in the context of "Suspended animation"




⭐ Core Definition: Dormancy

Dormancy is a period in an organism's life cycle when growth, development, and (in animals) physical activity are temporarily stopped. This minimizes metabolic activity and therefore helps an organism to conserve energy. Dormancy tends to be closely associated with environmental conditions. Organisms can synchronize entry to a dormant phase with their environment through predictive or consequential means.

Predictive dormancy occurs when an organism enters a dormant phase before the onset of adverse conditions. For example, photoperiod and decreasing temperature are used by many plants to predict the onset of winter.

↓ Menu

👉 Dormancy in the context of Suspended animation

Suspended animation is the slowing or stopping of biological function so that physiological capabilities are preserved. States of suspended animation are common in micro-organisms and some plant tissue, such as seeds. Many animals, including large ones, may undergo hibernation, and most plants have periods of dormancy. This article focuses primarily on the potential of large animals, especially humans, to undergo suspended animation.

In animals, suspended animation may be either hypometabolic or ametabolic in nature. It may be induced by either endogenous, natural or artificial biological, chemical or physical means. In its natural form, it may be spontaneously reversible as in the case of species demonstrating hypometabolic states of hibernation. When applied with therapeutic intent, as in deep hypothermic circulatory arrest (DHCA), usually technologically mediated revival is required.

↓ Explore More Topics
In this Dossier

Dormancy in the context of Bulb

In botany, a bulb is a short underground stem with fleshy leaves or leaf bases that function as food storage organs during dormancy. In gardening, plants with other kinds of storage organ are also called ornamental bulbous plants or just bulbs.

↑ Return to Menu

Dormancy in the context of Decomposition

Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. Decomposition can be a gradual process for organisms that have extended periods of dormancy.

One can differentiate abiotic decomposition from biotic decomposition (biodegradation); the former means "the degradation of a substance by chemical or physical processes", e.g., hydrolysis; the latter means "the metabolic breakdown of materials into simpler components by living organisms", typically by microorganisms. Animals, such as earthworms, also help decompose the organic materials on and in soil through their activities. Organisms that do this are known as decomposers or detritivores.

↑ Return to Menu

Dormancy in the context of Plant physiology

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.

Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed germination, dormancy and stomata function and transpiration. Plant physiology interacts with the fields of plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (biochemistry of plants), cell biology, genetics, biophysics and molecular biology.

↑ Return to Menu

Dormancy in the context of Endospore

An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form (endo means 'within'), but it is not a true spore (i.e., not an offspring). It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in Gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 25 million years old. When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani. Endospore formation does not occur within the Archaea or Eukaryota.

The endospore consists of the bacterium's DNA, ribosomes and large amounts of dipicolinic acid. Dipicolinic acid is a spore-specific chemical that appears to help in the ability for endospores to maintain dormancy. This chemical accounts for up to 10% of the spore's dry weight.

↑ Return to Menu

Dormancy in the context of Caladium

Caladium (/kəˈldiəm/) is a genus of flowering plants in the family Araceae. They are often known by the common name elephant ear (which they share with the closely related genera Alocasia, Colocasia, and Xanthosoma), heart of Jesus, and angel wings. There are over 1000 named cultivars of Caladium bicolor from the original South American plant.

The genus Caladium includes seven species that are native to South America and Central America, and naturalized in India, parts of Africa, and various tropical islands. They grow in open areas of the forest and on the banks of rivers and go dormant during the dry season. The wild plants grow to 15–35 inches (40–90 cm) tall, with leaves mostly 6-18 inches (15–45 cm) long and broad.

↑ Return to Menu

Dormancy in the context of Flower bud

In botany, a bud is an undeveloped or embryonic shoot and normally occurs in the axil of a leaf or at the tip of a stem. Once formed, a bud may remain for some time in a dormant condition, or it may form a shoot immediately. Buds may be specialized to develop flowers or short shoots or may have the potential for general shoot development. The term bud is also used in zoology, where it refers to an outgrowth from the body which can develop into a new individual.

↑ Return to Menu

Dormancy in the context of Underground stem

Underground stems are modified plant parts that derive from stem tissue but exist under the soil surface. They function as storage tissues for food and nutrients, facilitate the propagation of new clones, and aid in perennation (survival from one growing season to the next). Types of underground stems include bulbs, corms, rhizomes, stolons, and tubers.

Plants have two structures or axes of growth, which can be best seen from seed germination and growth. Seedlings develop two axes of growth: stems, which develop upward out of the soil, and roots, which develop downward. The roots are modified to have root hairs and branch indiscriminately with cells that take in water and nutrients, while the stems are modified to move water and nutrients to and from the leaves and flowers. Stems have nodes with buds where leaves and flowers arise at specific locations, while roots do not. Plants use underground stems to multiply by asexual reproduction and to survive from one year to the next, usually through dormancy. Some plants produce stems modified to store energy and preserve a location of potential growth to survive a cold or dry period which normally is a period of inactive growth, and when that period is over the plants resume new growth from the underground stems.

↑ Return to Menu