Division by zero in the context of Wheel theory


Division by zero in the context of Wheel theory

Division by zero Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Division by zero in the context of "Wheel theory"


⭐ Core Definition: Division by zero

In mathematics, division by zero, division where the divisor (denominator) is zero, is a problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).

The usual definition of the quotient in elementary arithmetic is the number which yields the dividend when multiplied by the divisor. That is, is equivalent to . By this definition, the quotient is nonsensical, as the product is always rather than some other number . Following the ordinary rules of elementary algebra while allowing division by zero can create a mathematical fallacy, a subtle mistake leading to absurd results. To prevent this, the arithmetic of real numbers and more general numerical structures called fields leaves division by zero undefined, and situations where division by zero might occur must be treated with care. Since any number multiplied by zero is zero, the expression is also undefined.

↓ Menu
HINT:

👉 Division by zero in the context of Wheel theory

A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring.

The term wheel is inspired by the topological picture of the real projective line together with an extra point (bottom element) such that .

↓ Explore More Topics
In this Dossier

Division by zero in the context of Zero

0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 results in 0, and consequently dividing by 0 is generally considered to be undefined in arithmetic.

As a numerical digit, 0 plays a crucial role in decimal notation: it indicates that the power of ten corresponding to the place containing a 0 does not contribute to the total. For example, "205" in decimal means two hundreds, no tens, and five ones. The same principle applies in place-value notations that uses a base other than ten, such as binary and hexadecimal. The modern use of 0 in this manner derives from Indian mathematics that was transmitted to Europe via medieval Islamic mathematicians and popularized by Fibonacci. It was independently used by the Maya.

View the full Wikipedia page for Zero
↑ Return to Menu

Division by zero in the context of Fraction

A fraction (from Latin: fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction (examples: 1/2 and 17/3) consists of an integer numerator, displayed above a line (or before a slash like 12), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.

Fractions can be used to represent ratios and division. Thus the fraction 3/4 can be used to represent the ratio 3:4 (the ratio of the part to the whole), and the division 3 ÷ 4 (three divided by four).

View the full Wikipedia page for Fraction
↑ Return to Menu

Division by zero in the context of Singularity (mathematics)

In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.

For example, the reciprocal function has a singularity at , where the value of the function is not defined, as involving a division by zero. The absolute value function also has a singularity at , since it is not differentiable there.

View the full Wikipedia page for Singularity (mathematics)
↑ Return to Menu

Division by zero in the context of Least common multiple

In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers a and b, usually denoted by lcm(ab), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a, 0) as 0 for all a, since 0 is the only common multiple of a and 0.

The least common multiple of the denominators of two fractions is the "lowest common denominator" (lcd), and can be used for adding, subtracting or comparing the fractions.

View the full Wikipedia page for Least common multiple
↑ Return to Menu

Division by zero in the context of Complex projective line

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere.

View the full Wikipedia page for Complex projective line
↑ Return to Menu

Division by zero in the context of Mathematical fallacy

In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof.

For example, the reason why validity fails may be attributed to a division by zero that is hidden by algebraic notation. There is a certain quality of the mathematical fallacy: as typically presented, it leads not only to an absurd result, but does so in a crafty or clever way. Therefore, these fallacies, for pedagogic reasons, usually take the form of spurious proofs of obvious contradictions. Although the proofs are flawed, the errors, usually by design, are comparatively subtle, or designed to show that certain steps are conditional, and are not applicable in the cases that are the exceptions to the rules.

View the full Wikipedia page for Mathematical fallacy
↑ Return to Menu

Division by zero in the context of Fatal exception

In computing, a fatal exception error or fatal error is an error that causes a program to abort (ABEND) and may therefore return the user to the operating system. When this happens, data that the program was processing may be lost. A fatal error is usually distinguished from a fatal system error (colloquially referred to in the MS Windows operating systems by the error message it produces as a "blue screen of death"). A fatal error occurs typically in any of the following cases:

In some systems, such as macOS and Microsoft Windows, a fatal error causes the operating system to create a log entry or to save an image (core dump) of the process.

View the full Wikipedia page for Fatal exception
↑ Return to Menu