Distribution (mathematics) in the context of Particle-size distribution


Distribution (mathematics) in the context of Particle-size distribution

Distribution (mathematics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Distribution (mathematics) in the context of "Particle-size distribution"


⭐ Core Definition: Distribution (mathematics)

Distributions, also known as Schwartz distributions are a kind of generalized function in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions (weak solutions) than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function.

↓ Menu
HINT:

👉 Distribution (mathematics) in the context of Particle-size distribution

In granulometry, the particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Significant energy is usually required to disintegrate soil, etc. particles into the PSD that is then called a grain size distribution.

↓ Explore More Topics
In this Dossier

Distribution (mathematics) in the context of Dirac delta function

In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as

View the full Wikipedia page for Dirac delta function
↑ Return to Menu

Distribution (mathematics) in the context of Electron configuration

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s 2s 2p, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively.

Electronic configurations describe each electron as moving independently in an orbital, in an average field created by the nuclei and all the other electrons. Mathematically, configurations are described by Slater determinants or configuration state functions.

View the full Wikipedia page for Electron configuration
↑ Return to Menu

Distribution (mathematics) in the context of Nonparametric statistics

Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. Nonparametric statistics can be used for descriptive statistics or statistical inference. Nonparametric tests are often used when the assumptions of parametric tests are evidently violated.

View the full Wikipedia page for Nonparametric statistics
↑ Return to Menu

Distribution (mathematics) in the context of Bump function

In mathematical analysis, a bump function (also called a test function) is a function on a Euclidean space which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions.

View the full Wikipedia page for Bump function
↑ Return to Menu

Distribution (mathematics) in the context of Molar mass distribution

In polymer chemistry, the molar mass distribution (or molecular weight distribution) describes the relationship between the number of moles of each polymer species (Ni) and the molar mass (Mi) of that species. In linear polymers, the individual polymer chains rarely have exactly the same degree of polymerization and molar mass, and there is always a distribution around an average value. The molar mass distribution of a polymer may be modified by polymer fractionation.

View the full Wikipedia page for Molar mass distribution
↑ Return to Menu

Distribution (mathematics) in the context of Generalized function

In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful for treating discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. Important motivations have been the technical requirements of theories of partial differential equations and group representations.

A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and some contemporary developments are closely related to Mikio Sato's algebraic analysis.

View the full Wikipedia page for Generalized function
↑ Return to Menu

Distribution (mathematics) in the context of Hardy space

In complex analysis, the Hardy spaces (or Hardy classes) are spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the paper (Hardy 1915). In real analysis Hardy spaces are spaces of distributions on the real n-space , defined (in the sense of distributions) as boundary values of the holomorphic functions. Hardy spaces are related to the L spaces. For these Hardy spaces are subsets of spaces, while for the spaces have some undesirable properties, and the Hardy spaces are much better behaved. Hence, spaces can be considered extensions of spaces.

Hardy spaces have a number of applications, both in mathematical analysis itself as well as in interdisciplinary areas such as control theory (e.g. methods) and scattering theory.

View the full Wikipedia page for Hardy space
↑ Return to Menu