Display device in the context of Computer game


Display device in the context of Computer game

Display device Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Display device in the context of "Computer game"


⭐ Core Definition: Display device

A display device is an output device for presentation of information in visual or tactile form (the latter used for example in tactile electronic displays for blind people). When the input information that is supplied has an electrical signal the display is called an electronic display.

Common applications for electronic visual displays are television sets or computer monitors.

↓ Menu
HINT:

In this Dossier

Display device in the context of Image

An image or picture is a visual representation. An image can be two-dimensional, such as a drawing, painting, or photograph, or three-dimensional, such as a carving or sculpture. Images may be displayed through other media, including a projection on a surface, activation of electronic signals, or digital displays; they can also be reproduced through mechanical means, such as photography, printmaking, or photocopying. Images can also be animated through digital or physical processes.

In the context of signal processing, an image is a distributed amplitude of color(s). In optics, the term image (or optical image) refers specifically to the reproduction of an object formed by light waves coming from the object.

View the full Wikipedia page for Image
↑ Return to Menu

Display device in the context of Pixel

In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the smallest element that can be manipulated through software.

Each pixel is a sample of an original image; more samples typically provide more accurate representations of the original. The intensity of each pixel is variable. In color imaging systems, a color is typically represented by three or four component intensities such as red, green, and blue, or cyan, magenta, yellow, and black.

View the full Wikipedia page for Pixel
↑ Return to Menu

Display device in the context of Video game

A video game, computer game, or simply game, is an electronic game that involves interaction with a user interface or input device (such as a joystick, controller, keyboard, or motion sensing device) to generate visual feedback from a display device, most commonly shown in a video format on a television set, computer monitor, flat-panel display or touchscreen on handheld devices, or a virtual reality headset. Most modern video games are audiovisual, with audio complement delivered through speakers or headphones, and sometimes also with other types of sensory feedback (e.g., haptic technology that provides tactile sensations). Some video games also allow microphone and webcam inputs for in-game chatting and livestreaming.

Video games are typically categorized according to their hardware platform, which traditionally includes arcade video games, console games, and computer games (which includes LAN games, online games, and browser games). More recently, the video game industry has expanded onto mobile gaming through mobile devices (such as smartphones and tablet computers), virtual and augmented reality systems, and remote cloud gaming. Video games are also classified into a wide range of genres based on their style of gameplay and target audience.

View the full Wikipedia page for Video game
↑ Return to Menu

Display device in the context of Flat-panel display

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

Flat-panel displays are thin, lightweight, provide better linearity and are capable of higher resolution than typical consumer-grade TVs from earlier eras. They are usually less than 10 centimetres (3.9 in) thick. While the highest resolution for consumer-grade CRT televisions was 1080i, many interactive flat panels in the 2020s are capable of 1080p and 4K resolution.

View the full Wikipedia page for Flat-panel display
↑ Return to Menu

Display device in the context of Display resolution

The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode-ray tube (CRT) displays, flat-panel displays (including liquid-crystal displays) and projection displays using fixed picture-element (pixel) arrays.

It is usually quoted as width × height, with the units in pixels: for example, 1024 × 768 means the width is 1024 pixels and the height is 768 pixels. This example would normally be spoken as "ten twenty-four by seven sixty-eight" or "ten twenty-four by seven six eight".

View the full Wikipedia page for Display resolution
↑ Return to Menu

Display device in the context of Display aspect ratio

The display aspect ratio (DAR) is the aspect ratio of a display device and so the proportional relationship between the physical width and the height of the display. numbers separated by a colon (x:y), where x corresponds to the width and y to the height. Common aspect ratios for displays, past and present, include 5:4, 4:3, 16:10, and 16:9.

View the full Wikipedia page for Display aspect ratio
↑ Return to Menu

Display device in the context of Refresh rate

The refresh rate, also known as vertical refresh rate, vertical scan rate or vertical frequency in reference to terminology originating with cathode-ray tubes (CRTs), is the number of times per second that a raster-based display device displays a new image. This is independent from frame rate, which describes how many images are stored or generated every second by the device driving the display. On CRT displays, higher refresh rates produce less flickering, thereby reducing eye strain. In other technologies such as liquid-crystal displays, the refresh rate affects only how often the image can potentially be updated.

Non-raster displays may not have a characteristic refresh rate. Vector displays, for instance, do not trace the entire screen, only the actual lines comprising the displayed image, so refresh speed may differ by the size and complexity of the image data. For computer programs or telemetry, the term is sometimes applied to how frequently a datum is updated with a new external value from another source (for example; a shared public spreadsheet or hardware feed).

View the full Wikipedia page for Refresh rate
↑ Return to Menu

Display device in the context of Cursor (user interface)

In human–computer interaction, a cursor is an indicator used to show the current position on a computer monitor or other display device that will respond to input, such as a text cursor or a mouse pointer.

View the full Wikipedia page for Cursor (user interface)
↑ Return to Menu

Display device in the context of 3D near-eye display

A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.

As of 2021, the most common type of 3D display is a stereoscopic display, which is the type of display used in almost all virtual reality equipment. 3D displays can be near-eye displays like in VR headsets, or they can be in a device further away from the eyes like a 3D-enabled mobile device or 3D movie theater.

View the full Wikipedia page for 3D near-eye display
↑ Return to Menu

Display device in the context of Digital imaging

Digital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the processing, compression, storage, printing and display of such images. A key advantage of a digital image, versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.

Digital imaging can be classified by the type of electromagnetic radiation or other waves whose variable attenuation, as they pass through or reflect off objects, conveys the information that constitutes the image. In all classes of digital imaging, the information is converted by image sensors into digital signals that are processed by a computer and made output as a visible-light image. For example, the medium of visible light allows digital photography (including digital videography) with various kinds of digital cameras (including digital video cameras). X-rays allow digital X-ray imaging (digital radiography, fluoroscopy, and CT), and gamma rays allow digital gamma ray imaging (digital scintigraphy, SPECT, and PET). Sound allows ultrasonography (such as medical ultrasonography) and sonar, and radio waves allow radar. Digital imaging lends itself well to image analysis by software, as well as to image editing (including image manipulation).

View the full Wikipedia page for Digital imaging
↑ Return to Menu

Display device in the context of Multi-monitor

Multi-monitor, also called multi-display and multi-head, is the use of multiple physical display devices, such as monitors, televisions, and projectors, in order to increase the area available for computer programs running on a single computer system. Research studies show that, depending on the type of work, multi-head may increase the productivity by between 50 and 70 percent.

View the full Wikipedia page for Multi-monitor
↑ Return to Menu

Display device in the context of Screen reader

A screen reader is a form of assistive technology (AT) that renders text and image content as speech or braille output. Screen readers are essential to blind people, and are also useful to people who are visually impaired, illiterate or learning-disabled. Screen readers are software applications that attempt to convey what people with normal eyesight see on a display to their users via non-visual means, like text-to-speech, sound icons, or a braille device. They do this by applying a wide variety of techniques that include, for example, interacting with dedicated accessibility APIs, using various operating system features (like inter-process communication and querying user interface properties), and employing hooking techniques.

Microsoft Windows operating systems have included the Microsoft Narrator screen reader since Windows 2000, though separate products such as Freedom Scientific's commercially available JAWS screen reader and ZoomText screen magnifier and the free and open source screen reader NVDA by NV Access are more popular for that operating system. Apple Inc.'s macOS, iOS, and tvOS include VoiceOver as a built-in screen reader, while Google's Android provides the Talkback screen reader and its ChromeOS can use ChromeVox. Similarly, Android-based devices from Amazon provide the VoiceView screen reader. There are also free and open source screen readers for Linux and Unix-like systems, such as Speakup and Orca.

View the full Wikipedia page for Screen reader
↑ Return to Menu

Display device in the context of Contrast (vision)

Contrast is the difference in luminance or color that makes an object (or its representation in an image or display) visible against a background of different luminance or color. The human visual system is more sensitive to contrast than to absolute luminance; thus, we can perceive the world similarly despite significant changes in illumination throughout the day or across different locations.

The maximum contrast of an image is termed the contrast ratio or dynamic range. In images where the contrast ratio approaches the maximum possible for the medium, there is a conservation of contrast. In such cases, increasing contrast in certain parts of the image will necessarily result in a decrease in contrast elsewhere. Brightening an image increases contrast in darker areas but decreases it in brighter areas; conversely, darkening the image will have the opposite effect. Bleach bypass reduces contrast in the darkest and brightest parts of an image while enhancing luminance contrast in areas of intermediate brightness.

View the full Wikipedia page for Contrast (vision)
↑ Return to Menu