Discrete geometry in the context of Geometric graph theory


Discrete geometry in the context of Geometric graph theory

Discrete geometry Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Discrete geometry in the context of "Geometric graph theory"


⭐ Core Definition: Discrete geometry

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology.

↓ Menu
HINT:

In this Dossier

Discrete geometry in the context of Analytic geometry

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete and computational geometry.

View the full Wikipedia page for Analytic geometry
↑ Return to Menu

Discrete geometry in the context of Structural rigidity

In discrete geometry and mechanics, structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges.

View the full Wikipedia page for Structural rigidity
↑ Return to Menu

Discrete geometry in the context of Convex geometry

↑ Return to Menu

Discrete geometry in the context of List of unsolved problems in mathematics

Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both difficulty and importance.

View the full Wikipedia page for List of unsolved problems in mathematics
↑ Return to Menu

Discrete geometry in the context of Polyhedral combinatorics

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex). Additionally, many computer scientists use the phrase “polyhedral combinatorics” to describe research into precise descriptions of the faces of certain specific polytopes (especially 0-1 polytopes, whose vertices are subsets of a hypercube) arising from integer programming problems.

View the full Wikipedia page for Polyhedral combinatorics
↑ Return to Menu

Discrete geometry in the context of Geometric combinatorics

Geometric combinatorics is a branch of mathematics in general and combinatorics in particular. It includes a number of subareas such as polyhedral combinatorics (the study of faces of convex polyhedra), convex geometry (the study of convex sets, in particular combinatorics of their intersections), and discrete geometry, which in turn has many applications to computational geometry. Other important areas include metric geometry of polyhedra, such as the Cauchy theorem on rigidity of convex polytopes. The study of regular polytopes, Archimedean solids, and kissing numbers is also a part of geometric combinatorics. Special polytopes are also considered, such as the permutohedron, associahedron and Birkhoff polytope.

View the full Wikipedia page for Geometric combinatorics
↑ Return to Menu