Discrete dynamical system in the context of Poincaré map


Discrete dynamical system in the context of Poincaré map

Discrete dynamical system Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Discrete dynamical system in the context of "Poincaré map"


⭐ Core Definition: Discrete dynamical system

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

At any given time, a dynamical system has a state representing a point in an appropriate state space. This state is often given by a tuple of real numbers or by a vector in a geometrical manifold. The evolution rule of the dynamical system is a function that describes what future states follow from the current state. Often the function is deterministic, that is, for a given time interval only one future state follows from the current state. However, some systems are stochastic, in that random events also affect the evolution of the state variables.

↓ Menu
HINT:

👉 Discrete dynamical system in the context of Poincaré map

In mathematics, particularly in dynamical systems, a first recurrence map or Poincaré map, named after Henri Poincaré, is the intersection of a periodic orbit in the state space of a continuous dynamical system with a certain lower-dimensional subspace, called the Poincaré section, transversal to the flow of the system. More precisely, one considers a periodic orbit with initial conditions within a section of the space, which leaves that section afterwards, and observes the point at which this orbit first returns to the section. One then creates a map to send the first point to the second, hence the name first recurrence map. The transversality of the Poincaré section means that periodic orbits starting on the subspace flow through it and not parallel to it.

A Poincaré map can be interpreted as a discrete dynamical system with a state space that is one dimension smaller than the original continuous dynamical system. Because it preserves many properties of periodic and quasiperiodic orbits of the original system and has a lower-dimensional state space, it is often used for analyzing the original system in a simpler way. In practice this is not always possible as there is no general method to construct a Poincaré map.

↓ Explore More Topics
In this Dossier

Discrete dynamical system in the context of Initial condition

In mathematics and particularly in dynamical systems, an initial condition is the initial value (often at time ) of a differential equation, difference equation, or other "time"-dependent equation which evolves in time. The most fundamental case, an ordinary differential equation of order k (the number of derivatives in the equation), generally requires k initial conditions to trace the equation's evolution through time. In other contexts, the term may refer to an initial value of a recurrence relation, discrete dynamical system, hyperbolic partial differential equation, or even a seed value of a pseudorandom number generator, at "time zero", enough such that the overall system can be evolved in "time", which may be discrete or continuous. The problem of determining a system's evolution from initial conditions is referred to as an initial value problem.

View the full Wikipedia page for Initial condition
↑ Return to Menu