Diffraction grating in the context of Joseph von Fraunhofer


Diffraction grating in the context of Joseph von Fraunhofer

Diffraction grating Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Diffraction grating in the context of "Joseph von Fraunhofer"


⭐ Core Definition: Diffraction grating

In optics, a diffraction grating is a grating with a periodic structure of appropriate scale so as to diffract light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffraction angles) known as diffracted orders. The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or periodic distance between adjacent diffracting elements (e.g., parallel slits for a transmission grating) on the grating, and the wavelength of the incident light. Because the grating acts as a dispersive element, diffraction gratings are commonly used in monochromators and spectrometers, but other applications are also possible such as optical encoders for high-precision motion control and wavefront measurement.

For typical applications, a reflective grating has ridges or "rulings" on its surface while a transmissive grating has transmissive or hollow slits on its surface. Such a grating modulates the amplitude of an incident wave to create a diffraction pattern. Some gratings modulate the phases of incident waves rather than the amplitude, and these types of gratings can be produced frequently by using holography.

↓ Menu
HINT:

👉 Diffraction grating in the context of Joseph von Fraunhofer

Joseph Ritter von Fraunhofer (/ˈfrnˌhfər/; German: [ˈfraʊnˌhoːfɐ]; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He developed diffraction grating and also invented the spectroscope. In 1814, he discovered and studied the dark absorption lines in the spectrum of the sun now known as Fraunhofer lines.

The German research organization Fraunhofer Society, which is Europe's biggest Society for the advancement of applied research, is named after him. Fraunhofer lines are used in astronomy to determine the composition of celestial bodies. His epitaph reads Aproximavit sidera, Latin for 'He brought closer the stars.'

↓ Explore More Topics
In this Dossier

Diffraction grating in the context of Length measurement

Length measurement, distance measurement, or range measurement (ranging) all refer to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light. Surveying is one ancient use of measuring long distances.

For tiny objects such as crystals and diffraction gratings, diffraction is used with X-ray light, or even electron beams. Measurement techniques for three-dimensional structures very small in every dimension use specialized instruments such as ion microscopy coupled with intensive computer modeling. These techniques are employed, for example, to measure the tiny features on wafers during the manufacture of chips.

View the full Wikipedia page for Length measurement
↑ Return to Menu

Diffraction grating in the context of Stellar classification

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Stellar classification
↑ Return to Menu

Diffraction grating in the context of Echelle Grating

An echelle grating (from French échelle, meaning "ladder") is a type of diffraction grating characterised by a relatively low groove density, but a groove shape which is optimized for use at high incidence angles and therefore in high diffraction orders. Higher diffraction orders allow for increased dispersion (spacing) of spectral features at the detector, enabling increased differentiation of these features. Echelle gratings are, like other types of diffraction gratings, used in spectrometers and similar instruments. They are most useful in cross-dispersed high resolution spectrographs, such as HARPS, PARAS, and numerous other astronomical instruments.

View the full Wikipedia page for Echelle Grating
↑ Return to Menu

Diffraction grating in the context of Spectral type

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O-type) to the coolest (M-type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Spectral type
↑ Return to Menu