Diffraction in the context of "Focus (optics)"

⭐ In the context of focus (optics), diffraction is considered…

Ad spacer

⭐ Core Definition: Diffraction

Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Diffraction is the same physical effect as interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed.

Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Diffraction in the context of Focus (optics)

In geometrical optics, a focus, also called an image point, is a point where light rays originating from a point on an object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. Even in the absence of aberrations, the smallest possible blur circle is the Airy disc caused by diffraction from the optical system's aperture; diffraction is the ultimate limit to the light focusing ability of any optical system. Aberrations tend to worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures.

An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged. The border between these is sometimes defined using a "circle of confusion" criterion.

↓ Explore More Topics
In this Dossier

Diffraction in the context of Diffraction spikes

Diffraction spikes are lines radiating from bright light sources, causing what is known as the starburst effect or sunstars in photographs and in vision. They are artifacts caused by light diffracting around the support vanes of the secondary mirror in reflecting telescopes, or edges of non-circular camera apertures, and around eyelashes and eyelids in the eye.

While similar in appearance, this is a different effect to "vertical smear" or "blooming" that appears when bright light sources are captured by a charge-coupled device (CCD) image sensor.

↑ Return to Menu

Diffraction in the context of Artifact (error)

In natural science and signal processing, an artifact or artefact is any error in the perception or representation of any information introduced by the involved equipment or technique(s).

↑ Return to Menu

Diffraction in the context of Optics

Optics is the branch of physics that studies the behaviour, manipulation, and detection of electromagnetic radiation, including its interactions with matter and instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. The study of optics extends to other forms of electromagnetic radiation, including radio waves, microwaves, and X-rays. The term optics is also applied to technology for manipulating beams of elementary charged particles.

Most optical phenomena can be accounted for by using the classical electromagnetic description of light, however, complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics. Historically, the ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation.

↑ Return to Menu

Diffraction in the context of Ray (optics)

In optics, a ray is an idealized geometrical model of light or other electromagnetic radiation, obtained by choosing a curve that is perpendicular to the wavefronts of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very complex optical systems to be analyzed mathematically or simulated by computer. Ray tracing uses approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray optics or geometrical optics does not describe phenomena such as diffraction, which require wave optics theory. Some wave phenomena such as interference can be modeled in limited circumstances by adding phase to the ray model.

↑ Return to Menu

Diffraction in the context of Airy disc

In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.

The diffraction pattern resulting from a uniformly illuminated, circular aperture has a bright central region, known as the Airy disk, which together with the series of concentric rings around is called the Airy pattern. Both are named after George Biddell Airy. The disk and rings phenomenon had been known prior to Airy; John Herschel described the appearance of a bright star seen through a telescope under high magnification for an 1828 article on light for the Encyclopedia Metropolitana:

↑ Return to Menu

Diffraction in the context of F-number

An f-number is a measure of the light-gathering ability of an optical system such as a camera lens. It is defined as the ratio of the system's focal length to the diameter of the entrance pupil ("clear aperture"). The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, diffraction, and exposure of a photograph. The f-number is dimensionless and is usually expressed using a lower-case hooked f with the format f/N, where N is the f-number.

The f-number is also known as the inverse relative aperture, because it is the inverse of the relative aperture, defined as the aperture diameter divided by the focal length. A lower f-number means a larger relative aperture and more light entering the system, while a higher f-number means a smaller relative aperture and less light entering the system. The f-number is related to the numerical aperture (NA) of the system, which measures the range of angles over which light can enter or exit the system. The numerical aperture takes into account the refractive index of the medium in which the system is working, while the f-number does not.

↑ Return to Menu

Diffraction in the context of Astronomical seeing

In astronomy, seeing is the degradation of the image of an astronomical object due to turbulence in the atmosphere of Earth that may become visible as blurring, twinkling or variable distortion. The origin of this effect is rapidly changing variations of the optical refractive index along the light path from the object to the detector.Seeing is a major limitation to the angular resolution in astronomical observations with telescopes that would otherwise be limited through diffraction by the size of the telescope aperture.Today, many large scientific ground-based optical telescopes include adaptive optics to overcome seeing.

The strength of seeing is often characterized by the angular diameter of the long-exposure image of a star (seeing disk) or by the Fried parameter r0. The diameter of the seeing disk is the full width at half maximum of its optical intensity. An exposure time of several tens of milliseconds can be considered long in this context. The Fried parameter describes the size of an imaginary telescope aperture for which the diffraction limited angular resolution is equal to the resolution limited by seeing. Both the size of the seeing disc and the Fried parameter depend on the optical wavelength, but it is common to specify them for 500 nanometers.A seeing disk smaller than 0.4 arcseconds or a Fried parameter larger than 30 centimeters can be considered excellent seeing. The best conditions are typically found at high-altitude observatories on small islands, such as those at Mauna Kea or La Palma.

↑ Return to Menu

Diffraction in the context of Wave theory of light

In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid. This usage tends not to include effects such as quantum noise in optical communication, which is studied in the sub-branch of coherence theory.

↑ Return to Menu