Diapir in the context of "Volcano"

⭐ In the context of volcanoes, diapirs are most directly associated with which type of volcanic activity?

Ad spacer

⭐ Core Definition: Diapir

A diapir (/ˈd.əpɪər/; from French diapir [djapiʁ], from Ancient Greek διαπειραίνω (diapeiraínō) 'to pierce through') is a type of intrusion in which a more mobile and ductilely deformable material is forced into brittle overlying rocks. Depending on the tectonic environment, diapirs can range from idealized mushroom-shaped Rayleigh–Taylor instability structures in regions with low tectonic stress such as in the Gulf of Mexico to narrow dikes of material that move along tectonically induced fractures in surrounding rock.

The term was introduced by Romanian geologist Ludovic Mrazek, who was the first to understand the principle of salt tectonics and plasticity. The term diapir may be applied to igneous intrusions, but it is more commonly applied to non-igneous, relatively cold materials, such as salt domes and mud diapirs. If a salt diapir reaches the surface, it can flow because salt becomes ductile with a small amount of moisture, forming a salt glacier.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Diapir in the context of Volcano

A volcano is commonly defined as a vent or fissure in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

On Earth, volcanoes are most often found where tectonic plates are diverging or converging, and because most of Earth's plate boundaries are underwater, most volcanoes are found underwater. For example, a mid-ocean ridge, such as the Mid-Atlantic Ridge, has volcanoes caused by divergent tectonic plates whereas the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates. Volcanoes resulting from divergent tectonic activity are usually non-explosive whereas those resulting from convergent tectonic activity cause violent eruptions. Volcanoes can also form where there is stretching and thinning of the crust's plates, such as in the East African Rift, the Wells Gray-Clearwater volcanic field, and the Rio Grande rift in North America. Volcanism away from plate boundaries most likely arises from upwelling diapirs from the core–mantle boundary called mantle plumes, 3,000 kilometres (1,900 mi) deep within Earth. This results in hotspot volcanism or intraplate volcanism, in which the plume may cause thinning of the crust and result in a volcanic island chain due to the continuous movement of the tectonic plate, of which the Hawaiian hotspot is an example. Volcanoes are usually not created at transform tectonic boundaries where two tectonic plates slide past one another.

↓ Explore More Topics
In this Dossier

Diapir in the context of Hotspot (geology)

In geology, hotspots (or hot spots) are volcanic locales thought to be fed by underlying mantle that is anomalously hot compared with the surrounding mantle. Examples include the Hawaii, Iceland, and Yellowstone hotspots. A hotspot's position on the Earth's surface is independent of tectonic plate boundaries, and so hotspots may create a chain of volcanoes as the plates move above them.

There are two hypotheses that attempt to explain their origins. One suggests that hotspots are due to mantle plumes that rise as thermal diapirs from the core–mantle boundary. The alternative plate theory is that the mantle source beneath a hotspot is not anomalously hot, rather the crust above is unusually weak or thin, so that lithospheric extension permits the passive rising of melt from shallow depths.

↑ Return to Menu

Diapir in the context of Geology of the Yosemite area

The exposed geology of the Yosemite area includes primarily granitic rocks with some older metamorphic rock. The first rocks were laid down in Precambrian times, when the area around Yosemite National Park was on the edge of a very young North American continent. The sediment that formed the area first settled in the waters of a shallow sea, and compressive forces from a subduction zone in the mid-Paleozoic fused the seabed rocks and sediments, appending them to the continent. Heat generated from the subduction created island arcs of volcanoes that were also thrust into the area of the park. In time, the igneous and sedimentary rocks of the area were later heavily metamorphosed.

Most of the rock now exposed in the park is granitic, having been formed 210 to 80 million years ago as igneous diapirs 6 miles (10 km) below the surface. Over time, most of the overlying rock was uplifted along with the rest of the Sierra Nevada and was removed from the area by erosion. This exposed the granitic rock to much lower pressure, and it was also subjected to erosion in the forms of exfoliation and mass wasting.

↑ Return to Menu

Diapir in the context of Ludovic Mrazek

Ludovic Mrazec (July 17, 1867 in Craiova – June 9, 1944 in Bucharest) was a Romanian geologist and member of the Romanian Academy. He introduced the term diapir that denotes a type of intrusion in which a more mobile and ductilely deformable material is forced into brittle overlying rocks. The phenomenon of "diapirism" allows rock salt to provide an effective trap for hydrocarbon deposits. In this way, Ludovic Mrazec explained the distribution of hydrocarbon accumulations in the Neogene Carpathian. Diapirism is commonly used as a basic concept in geological survey as well as in Planetary science.

↑ Return to Menu