Dewatering in the context of "Kingston Fossil Plant coal fly ash slurry spill"

Play Trivia Questions online!

or

Skip to study material about Dewatering in the context of "Kingston Fossil Plant coal fly ash slurry spill"




⭐ Core Definition: Dewatering

Dewatering /dˈwɔːtərɪŋ/ is the removal of water from a location. This may be done by wet classification, centrifugation, filtration, or similar solid-liquid separation processes, such as removal of residual liquid from a filter cake by a filter press as part of various industrial processes.

Construction dewatering, unwatering, or water control are common terms used to describe removal or draining groundwater or surface water from a riverbed, construction site, caisson, or mine shaft, by pumping or evaporation. On a construction site, this dewatering may be implemented before subsurface excavation for foundations, shoring, or cellar space to lower the water table. This frequently involves the use of submersible "dewatering" pumps, centrifugal ("trash") pumps, eductors, or application of vacuum to well points. The international business research company Visiongain valued the global dewatering pump market at $6.4 billion in 2018.

↓ Menu

👉 Dewatering in the context of Kingston Fossil Plant coal fly ash slurry spill

The Kingston Fossil Plant Spill was an environmental and industrial disaster that occurred on December 22, 2008, when a dike ruptured at a coal ash pond at the Tennessee Valley Authority's Kingston Fossil Plant in Roane County, Tennessee, releasing 1.1 billion US gallons (4.2 million cubic metres) of coal fly ash slurry. The coal-fired power plant, located across the Clinch River from the city of Kingston, used a series of ponds to store and dewater the fly ash, a byproduct of coal combustion. The spill released a slurry of fly ash and water which traveled across the Emory River and its Swan Pond embayment onto the opposite shore, covering up to 300 acres (1.2 km) of the surrounding land. The spill damaged multiple homes and flowed into nearby waterways including the Emory River and Clinch River, both tributaries of the Tennessee River. It was the largest industrial spill in United States history.

The initial spill, which resulted in millions of dollars' worth of property damages and rendered many properties uninhabitable, cost TVA more than $1 billion to clean up and was declared complete in 2015. TVA was found liable for the spill in August 2012 by the U.S. District Court for the Eastern District of Tennessee. The initial spill resulted in no injuries or deaths, but several of the employees of an engineering firm hired by TVA to clean up the spill developed illnesses, including brain cancer, lung cancer, and leukemia, as a result of exposure to the toxic coal ash, and more than 30 had died within 10 years of the spill. In November 2018, a federal jury ruled that the contractor did not properly inform the workers about the dangers of exposure to coal ash and had failed to provide them with necessary personal protective equipment. After rejecting multiple offers, workers reached a settlement with the contractor in May 2023.

↓ Explore More Topics
In this Dossier

Dewatering in the context of Combined sewer

A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.

Combined sewers can cause serious water pollution problems during combined sewer overflow (CSO) events when combined sewage and surface runoff flows exceed the capacity of the sewage treatment plant, or of the maximum flow rate of the system which transmits the combined sources. In instances where exceptionally high surface runoff occurs (such as large rainstorms), the load on individual tributary branches of the sewer system may cause a back-up to a point where raw sewage flows out of input sources such as toilets, causing inhabited buildings to be flooded with a toxic sewage-runoff mixture, incurring costs for cleanup and repair. When combined sewer systems experience these higher than normal throughputs, relief systems cause discharges containing human and industrial waste to flow into rivers, streams, or other bodies of water. Such events frequently cause both negative environmental and lifestyle consequences, including beach closures, contaminated shellfish unsafe for consumption, and contamination of drinking water sources, rendering them temporarily unsafe for drinking and requiring boiling before uses such as bathing or washing dishes.

↑ Return to Menu

Dewatering in the context of Engineering geology

Engineering geology is the application of geology to engineering study for the purpose of assuring that the geological factors regarding the location, design, construction, operation and maintenance of engineering works are recognized and accounted for. Engineering geologists provide geological and geotechnical recommendations, analysis, and design associated with human development and various types of structures. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

Engineering geology studies may be performed during the planning, environmental impact analysis, civil or structural engineering design, value engineering and construction phases of public and private works projects, and during post-construction and forensic phases of projects. Works completed by engineering geologists include; geologic hazards assessment, geotechnical, material properties, landslide and slope stability, erosion, flooding, dewatering, and seismic investigations, etc. Engineering geology studies are performed by a geologist or engineering geologist that is educated, trained and has obtained experience related to the recognition and interpretation of natural processes, the understanding of how these processes impact human made structures (and vice versa), and knowledge of methods by which to mitigate hazards resulting from adverse natural or human made conditions. The principal objective of the engineering geologist is the protection of life and property against damage caused by various geological conditions.

↑ Return to Menu