Dentin in the context of "Odontoblasts"

Play Trivia Questions online!

or

Skip to study material about Dentin in the context of "Odontoblasts"





In this Dossier

Dentin in the context of Hydroxylapatite

Hydroxyapatite (IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of apatite with the formula Ca5(PO4)3(OH), often written Ca10(PO4)6(OH)2 to denote that the crystal unit cell comprises two entities. It is the hydroxyl endmember of the complex apatite group. The OH ion can be replaced by fluoride or chloride, producing fluorapatite or chlorapatite. It crystallizes in the hexagonal crystal system. Pure hydroxyapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.

Up to 50% by volume and 70% by weight of human bone is a modified form of hydroxyapatite, known as bone mineral. Carbonated calcium-deficient hydroxyapatite is the main mineral of which dental enamel and dentin are composed. Hydroxyapatite crystals are also found in pathological calcifications such as those found in breast tumors, as well as calcifications within the pineal gland (and other structures of the brain) known as corpora arenacea or "brain sand".

↑ Return to Menu

Dentin in the context of Collagen

Collagen (/ˈkɒləən/) is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis.

Depending on the degree of mineralization, collagen tissues may be rigid (bone) or compliant (tendon) or have a gradient from rigid to compliant (cartilage). Collagen is also abundant in corneas, blood vessels, the gut, intervertebral discs, and dentin. In muscle tissue, it serves as a major component of the endomysium. Collagen constitutes 1% to 2% of muscle tissue and 6% by weight of skeletal muscle. The fibroblast is the most common cell creating collagen in animals. Gelatin, which is used in food and industry, is collagen that was irreversibly hydrolyzed using heat, basic solutions, or weak acids.

↑ Return to Menu

Dentin in the context of Hard tissue

Hard tissue, refers to "normal" calcified tissue, is the tissue which is mineralized and has a firm intercellular matrix. The hard tissues of humans are bone, tooth enamel, dentin, and cementum. The term is in contrast to soft tissue.

↑ Return to Menu

Dentin in the context of Mineralized tissues

Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support. Bone, mollusc shells, deep sea sponge Euplectella species, radiolarians, diatoms, antler bone, tendon, cartilage, tooth enamel and dentin are some examples of mineralized tissues.

These tissues have been finely tuned to enhance their mechanical capabilities over millions of years of evolution. Thus, mineralized tissues have been the subject of many studies since there is a lot to learn from nature as seen from the growing field of biomimetics. The remarkable structural organization and engineering properties makes these tissues desirable candidates for duplication by artificial means. Mineralized tissues inspire miniaturization, adaptability and multifunctionality. While natural materials are made up of a limited number of components, a larger variety of material chemistries can be used to simulate the same properties in engineering applications. However, the success of biomimetics lies in fully grasping the performance and mechanics of these biological hard tissues before swapping the natural components with artificial materials for engineering design.

↑ Return to Menu

Dentin in the context of Crown (tooth)

In dentistry, the crown is the visible part of the tooth above the gingival margin and is an essential component of dental anatomy. Covered by enamel, the crown plays a crucial role in cutting, tearing, and grinding food. Its shape and structure vary depending on the type and function of the tooth (incisors, canines, premolars, or molars), and differ between primary dentition and permanent dentition. The crown also contributes to facial aesthetics, speech, and oral health.

↑ Return to Menu

Dentin in the context of Tooth decay

Tooth decay, also known as caries, is the breakdown of teeth due to acids produced by bacteria. The resulting cavities may be many different colors, from yellow to black. Symptoms may include pain and difficulty eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation. Tooth regeneration is an ongoing stem cell–based field of study that aims to find methods to reverse the effects of decay; current methods are based on easing symptoms.

The cause of cavities is acid from bacteria dissolving the hard tissues of the teeth (enamel, dentin, and cementum). The acid is produced by the bacteria when they break down food debris or sugar on the tooth surface. Simple sugars in food are these bacteria's primary energy source, and thus a diet high in simple sugar is a risk factor. If mineral breakdown is greater than buildup from sources such as saliva, caries results. Risk factors include conditions that result in less saliva, such as diabetes mellitus, Sjögren syndrome, and some medications. Medications that decrease saliva production include psychostimulants, antihistamines, and antidepressants. Dental caries are also associated with poverty, poor cleaning of the mouth, and receding gums resulting in exposure of the roots of the teeth.

↑ Return to Menu

Dentin in the context of Tooth enamel

Tooth enamel is one of the four major tissues that make up the tooth in humans and many animals, including some species of fish. It makes up the normally visible part of the tooth, covering the crown. The other major tissues are dentin, cementum, and dental pulp. It is a very hard, white to off-white, highly mineralised substance that acts as a barrier to protect the tooth but can become susceptible to degradation, especially by acids from food and drink. In rare circumstances enamel fails to form, leaving the underlying dentin exposed on the surface.

↑ Return to Menu