Dentate gyrus in the context of Neural pathways


Dentate gyrus in the context of Neural pathways

Dentate gyrus Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Dentate gyrus in the context of "Neural pathways"


⭐ Core Definition: Dentate gyrus

The dentate gyrus (DG) is one of the subfields of the hippocampus, in the hippocampal formation. The hippocampal formation is located in the temporal lobe of the brain, and includes the hippocampus (including CA1 to CA4) subfields, and other subfields including the dentate gyrus, subiculum, and presubiculum.

The dentate gyrus is part of the trisynaptic circuit, a neural circuit of the hippocampus, thought to contribute to the formation of new episodic memories, the spontaneous exploration of novel environments and other functions. The dentate gyrus has toothlike projections from which it is named.

↓ Menu
HINT:

In this Dossier

Dentate gyrus in the context of Neural pathway

In neuroanatomy, a neural pathway is the connection formed by axons that project from neurons to make synapses onto neurons in another location, to enable neurotransmission (the sending of a signal from one region of the nervous system to another). Neurons are connected by a single axon, or by a bundle of axons known as a nerve tract, or fasciculus. Shorter neural pathways are found within grey matter in the brain, whereas longer projections, made up of myelinated axons, constitute white matter.

In the hippocampus, there are neural pathways involved in its circuitry including the perforant pathway, that provides a connectional route from the entorhinal cortex to all fields of the hippocampal formation, including the dentate gyrus, all CA fields (including CA1), and the subiculum.

View the full Wikipedia page for Neural pathway
↑ Return to Menu

Dentate gyrus in the context of Hippocampus

The hippocampus (pl.: hippocampi; via Latin from Greek ἱππόκαμπος, 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the subiculum are components of the hippocampal formation located in the limbic system. The hippocampus plays important roles in the consolidation of information from short-term memory to long-term memory, and in spatial memory that enables navigation. In humans and other primates the hippocampus is located in the archicortex, one of the three regions of allocortex, in each hemisphere with direct neural projections to, and reciprocal indirect projections from the neocortex. The hippocampus, as the medial pallium, is a structure found in all vertebrates.

In Alzheimer's disease (and other forms of dementia), the hippocampus is one of the first regions of the brain to be damaged; short-term memory loss and disorientation are included among the early symptoms. Damage to the hippocampus can also result from oxygen starvation (hypoxia), encephalitis, or medial temporal lobe epilepsy. People with extensive, bilateral hippocampal damage may experience anterograde amnesia: the inability to form and retain new memories.

View the full Wikipedia page for Hippocampus
↑ Return to Menu

Dentate gyrus in the context of Perforant path

In the brain, the perforant path or perforant pathway provides a connectional route from the entorhinal cortex to all fields of the hippocampal formation, including the dentate gyrus, all CA fields (including CA1), and the subiculum.

Though it arises mainly from entorhinal layers II and III, the perforant path comprises a smaller component that originates in deep layers V and VI.There is a major dichotomy with respect to the laminar origin and related terminal distribution: neurons in layer II (and possibly layer VI) project to the dentate gyrus and CA3, whereas layer III (and possibly layer V) cells project to CA1 and the subiculum via the temporoammonic pathway.

View the full Wikipedia page for Perforant path
↑ Return to Menu

Dentate gyrus in the context of Hippocampal formation

The hippocampal formation is a compound structure in the medial temporal lobe of the brain. It forms a c-shaped bulge on the floor of the inferior horn of the lateral ventricle. Typically, the hippocampal formation is said to included the dentate gyrus, the hippocampus, and the subiculum. The presubiculum, parasubiculum, and the entorhinal cortex may also be included. The hippocampal formation is thought to play a role in memory, spatial navigation and control of attention. The neural layout and pathways within the hippocampal formation are very similar in all mammals.

View the full Wikipedia page for Hippocampal formation
↑ Return to Menu

Dentate gyrus in the context of Hippocampus proper

The hippocampal subfields are four subfields CA1, CA2, CA3, and CA4 that make up the structure of the hippocampus. Regions described in the hippocampus are the head, body, and tail, and other hippocampal subfields include the dentate gyrus, the presubiculum, and the subiculum. The CA subfields use the initials of cornu ammonis, an earlier name of the hippocampus.

View the full Wikipedia page for Hippocampus proper
↑ Return to Menu

Dentate gyrus in the context of Limbic lobe

The limbic lobe is an arc-shaped cortical region of the limbic system, on the medial surface of each cerebral hemisphere of the mammalian brain, consisting of parts of the frontal, parietal and temporal lobes. The term is ambiguous, with some authors including the paraterminal gyrus, the subcallosal area, the cingulate gyrus, the parahippocampal gyrus, the dentate gyrus, the hippocampus and the subiculum;

View the full Wikipedia page for Limbic lobe
↑ Return to Menu

Dentate gyrus in the context of Uncus

The uncus is an anterior extremity of the parahippocampal gyrus. It is separated from the apex of the temporal lobe by a sulcus called the rhinal sulcus.Although superficially continuous with the hippocampal gyrus, the uncus forms morphologically a part of the rhinencephalon.

An important landmark that crosses the inferior surface of the uncus is the band of Giacomini or tail of the dentate gyrus.

View the full Wikipedia page for Uncus
↑ Return to Menu

Dentate gyrus in the context of EC-hippocampus system

The entorhinal cortex (EC) is a major part of the hippocampal formation of the brain, and is reciprocally connected with the hippocampus.

The hippocampal formation, which consists of the hippocampus, perirhinal cortex, the dentate gyrus, the subicular areas and the EC forms one of the most important parts of the limbic system. The entorhinal cortex is an infolding of the parahippocampal gyrus into the inferior (temporal) horn of the lateral ventricle.

View the full Wikipedia page for EC-hippocampus system
↑ Return to Menu

Dentate gyrus in the context of Trisynaptic circuit

The trisynaptic circuit or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The trisynaptic circuit is a neural circuit in the hippocampus, which is made up of three major cell groups: granule cells in the dentate gyrus, pyramidal neurons in CA3, and pyramidal neurons in CA1. The hippocampal relay involves three main regions within the hippocampus which are classified according to their cell type and projection fibers. The first projection of the hippocampus occurs between the entorhinal cortex (EC) and the dentate gyrus (DG). The entorhinal cortex transmits its signals from the parahippocampal gyrus to the dentate gyrus via granule cell fibers known collectively as the perforant path. The dentate gyrus then synapses on pyramidal cells in CA3 via mossy cell fibers. CA3 then fires to CA1 via Schaffer collaterals which synapse in the subiculum and are carried out through the fornix of the brain. Collectively the dentate gyrus, CA1, and CA3 of the hippocampus compose the trisynaptic loop.

EC → DG via the perforant path (synapse 1), DG → CA3 via mossy fibres (synapse 2), CA3 → CA1 via schaffer collaterals (synapse 3)

View the full Wikipedia page for Trisynaptic circuit
↑ Return to Menu

Dentate gyrus in the context of Granule cell

The name granule cell has been used for a number of different types of neurons whose only common feature is that they all have very small cell bodies. Granule cells are found within the granular layer of the cerebellum, the dentate gyrus of the hippocampus, the superficial layer of the dorsal cochlear nucleus, the olfactory bulb, and the cerebral cortex.

Cerebellar granule cells account for the majority of neurons in the human brain. These granule cells receive excitatory input from mossy fibers originating from pontine nuclei. Cerebellar granule cells project up through the Purkinje layer into the molecular layer where they branch out into parallel fibers that spread through Purkinje cell dendritic arbors. These parallel fibers form thousands of excitatory granule-cell–Purkinje-cell synapses onto the intermediate and distal dendrites of Purkinje cells using glutamate as a neurotransmitter.

View the full Wikipedia page for Granule cell
↑ Return to Menu

Dentate gyrus in the context of Subventricular zone

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ) (so-called because the VZ lines the inside of the developing ventricles).

In the developing cerebral cortex, which resides in the dorsal telencephalon, the SVZ and VZ are transient tissues that do not exist in the adult. However, the SVZ of the ventral telencephalon persists throughout life. The adult SVZ is composed of four distinct layers of variable thickness and cell density as well as cellular composition. Along with the dentate gyrus of the hippocampus, the SVZ is one of two places where neurogenesis has been found to occur in the adult mammalian brain. Adult SVZ neurogenesis takes the form of neuroblast precursors of interneurons that migrate to the olfactory bulb through the rostral migratory stream. The SVZ also appears to be involved in the generation of astrocytes following a brain injury.

View the full Wikipedia page for Subventricular zone
↑ Return to Menu

Dentate gyrus in the context of Subgranular zone

The subgranular zone (SGZ) is a layer of cells in the dentate gyrus, in the hippocampal formation, which is a site of adult neurogenesis in the brain.

The other major site of adult neurogenesis in the brain is the subventricular zone.

View the full Wikipedia page for Subgranular zone
↑ Return to Menu