Dense set in the context of "Classification of discontinuities"

Play Trivia Questions online!

or

Skip to study material about Dense set in the context of "Classification of discontinuities"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Dense set in the context of Classification of discontinuities

Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function.

The oscillation of a function at a point quantifies these discontinuities as follows:

↓ Explore More Topics
In this Dossier

Dense set in the context of Convex curve

In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves (the boundaries of bounded convex sets), the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.

Bounded convex curves have a well-defined length, which can be obtained by approximating them with polygons, or from the average length of their projections onto a line. The maximum number of grid points that can belong to a single curve is controlled by its length. The points at which a convex curve has a unique supporting line are dense within the curve, and the distance of these lines from the origin defines a continuous support function. A smooth simple closed curve is convex if and only if its curvature has a consistent sign, which happens if and only if its total curvature equals its total absolute curvature.

↑ Return to Menu