Deductive apparatus in the context of "Formal proof"

⭐ In the context of formal proof, the validity of each step in a sequence of well-formed formulas is ensured by what component of a formal system?

Ad spacer

⭐ Core Definition: Deductive apparatus

A formal system (or deductive system) is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms.

In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics.However, in 1931 Kurt Gödel proved that any consistent formal system sufficiently powerful to express basic arithmetic cannot prove its own completeness. This effectively showed that Hilbert's program was impossible as stated.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Deductive apparatus in the context of Formal proof

In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is generally effective, but there may be no method by which we can reliably find proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof.

The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a rule of the deductive apparatus (of some formal system) to the previous well-formed formulas in the proof sequence.

↓ Explore More Topics
In this Dossier