Data analysis in the context of "Intelligence field"

Play Trivia Questions online!

or

Skip to study material about Data analysis in the context of "Intelligence field"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Data analysis in the context of Interpersonal relationship

In social psychology, an interpersonal relation (or interpersonal relationship) describes a social association, connection, or affiliation between two or more people. It overlaps significantly with the concept of social relations, which are the fundamental unit of analysis within the social sciences. Relations vary in degrees of intimacy, self-disclosure, duration, reciprocity, and power distribution. The main themes or trends of the interpersonal relations are: family, kinship, friendship, love, marriage, business, employment, clubs, neighborhoods, ethical values, support, and solidarity. Interpersonal relations may be regulated by law, custom, or mutual agreement, and form the basis of social groups and societies. They appear when people communicate or act with each other within specific social contexts, and they thrive on equitable and reciprocal compromises.

Interdisciplinary analysis of relationships draws heavily upon the other social sciences, including, but not limited to: anthropology, communication, cultural studies, economics, linguistics, mathematics, political science, social work, and sociology. This scientific analysis had evolved during the 1990s and has become "relationship science", through the research done by Ellen Berscheid and Elaine Hatfield. This interdisciplinary science attempts to provide evidence-based conclusions through the use of data analysis.

↑ Return to Menu

Data analysis in the context of Data collection

Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, and business. While methods vary by discipline, the emphasis on ensuring accurate and honest collection remains the same. The goal for all data collection is to capture evidence that allows data analysis to lead to the formulation of credible answers to the questions that have been posed.

Regardless of the field of or preference for defining data (quantitative or qualitative), accurate data collection is essential to maintain research integrity. The selection of appropriate data collection instruments (existing, modified, or newly developed) and delineated instructions for their correct use reduce the likelihood of errors.

↑ Return to Menu

Data analysis in the context of Data

Data (/ˈdtə/ DAY-tə, US also /ˈdætə/ DAT) are a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data are usually organized into structures such as tables that provide additional context and meaning, and may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements.Data are commonly used in scientific research, economics, and virtually every other form of human organizational activity. Examples of data sets include price indices (such as the consumer price index), unemployment rates, literacy rates, and census data. In this context, data represent the raw facts and figures from which useful information can be extracted.

Data are collected using techniques such as measurement, observation, query, or analysis, and are typically represented as numbers or characters that may be further processed. Field data are data that are collected in an uncontrolled, in-situ environment. Experimental data are data that are generated in the course of a controlled scientific experiment. Data are analyzed using techniques such as calculation, reasoning, discussion, presentation, visualization, or other forms of post-analysis. Prior to analysis, raw data (or unprocessed data) is typically cleaned: Outliers are removed, and obvious instrument or data entry errors are corrected.

↑ Return to Menu

Data analysis in the context of Table (information)

A table is an arrangement of information or data, typically in rows and columns, or possibly in a more complex structure. Tables are widely used in communication, research, and data analysis. Tables appear in print media, handwritten notes, computer software, architectural ornamentation, traffic signs, and many other places. The precise conventions and terminology for describing tables vary depending on the context. Further, tables differ significantly in variety, structure, flexibility, notation, representation and use. Information or data conveyed in table form is said to be in tabular format (adjective). In books and technical articles, tables are typically presented apart from the main text in numbered and captioned floating blocks.

↑ Return to Menu

Data analysis in the context of Statistical analysis

Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population. In machine learning, the term inference is sometimes used instead to mean "make a prediction, by evaluating an already trained model"; in this context inferring properties of the model is referred to as training or learning (rather than inference), and using a model for prediction is referred to as inference (instead of prediction); see also predictive inference.

↑ Return to Menu

Data analysis in the context of Cluster analysis

Cluster analysis, or clustering, is a data analysis technique aimed at partitioning a set of objects into groups such that objects within the same group (called a cluster) exhibit greater similarity to one another (in some specific sense defined by the analyst) than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning.

Cluster analysis refers to a family of algorithms and tasks rather than one specific algorithm. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances between cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization problem. The appropriate clustering algorithm and parameter settings (including parameters such as the distance function to use, a density threshold or the number of expected clusters) depend on the individual data set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative process of knowledge discovery or interactive multi-objective optimization that involves trial and failure. It is often necessary to modify data preprocessing and model parameters until the result achieves the desired properties.

↑ Return to Menu