DNA polymerase in the context of Reverse transcriptase


DNA polymerase in the context of Reverse transcriptase

DNA polymerase Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about DNA polymerase in the context of "Reverse transcriptase"


⭐ Core Definition: DNA polymerase

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones.These enzymes catalyze the chemical reaction

DNA polymerase adds nucleotides to the three prime (3')-end of a DNA strand, one nucleotide at a time. Every time a cell divides, DNA polymerases are required to duplicate the cell's DNA, so that a copy of the original DNA molecule can be passed to each daughter cell. In this way, genetic information is passed down from generation to generation.

↓ Menu
HINT:

In this Dossier

DNA polymerase in the context of Base pair

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guaninecytosine and adeninethymine/uracil) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

Intramolecular base pairs can occur within single-stranded nucleic acids. This is particularly important in RNA molecules (e.g., transfer RNA), where Watson–Crick base pairs (guanine–cytosine and adenine-uracil) permit the formation of short double-stranded helices, and a wide variety of non–Watson–Crick interactions (e.g., G–U or A–A) allow RNAs to fold into a vast range of specific three-dimensional structures. In addition, base-pairing between transfer RNA (tRNA) and messenger RNA (mRNA) forms the basis for the molecular recognition events that result in the nucleotide sequence of mRNA becoming translated into the amino acid sequence of proteins via the genetic code.

View the full Wikipedia page for Base pair
↑ Return to Menu

DNA polymerase in the context of Nuclear pore

The nuclear pore complex (NPC), is a large protein complex giving rise to the nuclear pore. A great number of nuclear pores are studded throughout the nuclear envelope that surrounds the eukaryote cell nucleus. The pores enable the nuclear transport of macromolecules between the nucleoplasm of the nucleus and the cytoplasm of the cell. Small molecules can easily diffuse through the pores. Nuclear transport includes the transportation of RNA and ribosomal proteins from the nucleus to the cytoplasm, and the transport of proteins (such as DNA polymerase and lamins), carbohydrates, signaling molecules, and lipids into the nucleus. Each nuclear pore complex can actively mediate up to 1000 translocations per second.

The nuclear pore complex consists predominantly of a family of proteins known as nucleoporins (Nups). Each pore complex in the human cell nucleus is composed of about 1,000 individual protein molecules, from an evolutionarily conserved set of 35 distinct nucleoporins. The conserved sequences that code for nucleoporins regulate molecular transport through the nuclear pore. Nucleoporin-mediated transport does not entail direct energy expenditure but instead relies on concentration gradients associated with the RAN cycle (Ras-related nuclear protein cycle). In 2022 around 90% of the structure of the human NPC was elucidated in an open and a closed conformation, and published in a special issue of Science, featured on the cover. In 2024 the structure of the nuclear basket was solved, finalising the completion of the structure of the nuclear pore complex.

View the full Wikipedia page for Nuclear pore
↑ Return to Menu

DNA polymerase in the context of Polymerase

In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or half ladder replication.

A DNA polymerase from the thermophilic bacterium, Thermus aquaticus (Taq) (PDB 1BGX, EC 2.7.7.7), is used in the polymerase chain reaction, an important technique of molecular biology.

View the full Wikipedia page for Polymerase
↑ Return to Menu

DNA polymerase in the context of Molecular biologist

Molecular biology /məˈlɛkjʊlər/ is a branch of biology that seeks to understand the molecular structures and chemical processes that are the basis of biological activity within and between cells. It is centered largely on the study of nucleic acids (such as DNA and RNA) and proteins. It examines the structure, function, and interactions of these macromolecules as they orchestrate processes such as replication, transcription, translation, protein synthesis, and complex biomolecular interactions. The field of molecular biology is multi-disciplinary, relying on principles from genetics, biochemistry, physics, mathematics, and more recently computer science (bioinformatics).

Though cells and other microscopic structures had been observed in organisms as early as the 18th century, a detailed understanding of the mechanisms and interactions governing their behavior did not emerge until the 20th century, when technologies used in physics and chemistry had advanced sufficiently to permit their application in the biological sciences. The term 'molecular biology' was first used in 1945 by the English physicist William Astbury, who described it as an approach focused on discerning the underpinnings of biological phenomena—i.e. uncovering the physical and chemical structures and properties of biological molecules, as well as their interactions with other molecules and how these interactions explain observations of so-called classical biology, which instead studies biological processes at larger scales and higher levels of organization. In 1953, Francis Crick, James Watson, Rosalind Franklin, and their colleagues at the Medical Research Council Unit, Cavendish Laboratory, were the first to describe the double helix model for the chemical structure of deoxyribonucleic acid (DNA), which is often considered a landmark event for the nascent field because it provided a physico-chemical basis by which to understand the previously nebulous idea of nucleic acids as the primary substance of biological inheritance. They proposed this structure based on previous research done by Franklin, which was conveyed to them by Maurice Wilkins and Max Perutz. Their work led to the discovery of DNA in other microorganisms, plants, and animals.

View the full Wikipedia page for Molecular biologist
↑ Return to Menu

DNA polymerase in the context of Insertion (genetics)

In genetics, an insertion (also called an insertion mutation) is the addition of one or more nucleotide base pairs into a DNA sequence. This can often happen in microsatellite regions due to the DNA polymerase slipping. Insertions can be anywhere in size from one base pair incorrectly inserted into a DNA sequence to a section of one chromosome inserted into another. The mechanism of the smallest single base insertion mutations is believed to be through base-pair separation between the template and primer strands followed by non-neighbor base stacking, which can occur locally within the DNA polymerase active site. On a chromosome level, an insertion refers to the insertion of a larger sequence into a chromosome. This can happen due to unequal crossover during meiosis.

N region addition is the addition of non-coded nucleotides during recombination by terminal deoxynucleotidyl transferase.

View the full Wikipedia page for Insertion (genetics)
↑ Return to Menu

DNA polymerase in the context of DNA virus

A DNA virus is a virus that has a genome made of deoxyribonucleic acid (DNA) that is replicated by a DNA polymerase. They can be divided between those that have two strands of DNA in their genome, called double-stranded DNA (dsDNA) viruses, and those that have one strand of DNA in their genome, called single-stranded DNA (ssDNA) viruses. dsDNA viruses primarily belong to two realms: Duplodnaviria and Varidnaviria, and ssDNA viruses are almost exclusively assigned to the realm Monodnaviria, which also includes some dsDNA viruses. Additionally, many DNA viruses are unassigned to higher taxa. Reverse transcribing viruses, which have a DNA genome that is replicated through an RNA intermediate by a reverse transcriptase, are classified into the kingdom Pararnavirae in the realm Riboviria.

DNA viruses are ubiquitous worldwide, especially in marine environments where they form an important part of marine ecosystems, and infect both prokaryotes and eukaryotes. They appear to have multiple origins, as viruses in Monodnaviria appear to have emerged from archaeal and bacterial plasmids on multiple occasions, though the origins of Duplodnaviria and Varidnaviria are less clear.

View the full Wikipedia page for DNA virus
↑ Return to Menu

DNA polymerase in the context of Reverse transcription

A reverse transcriptase (RT) is an enzyme used to convert RNA to DNA, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobile genetic elements to proliferate within the host genome, and by eukaryotic cells to extend the telomeres at the ends of their linear chromosomes. The process does not violate the flows of genetic information as described by the classical central dogma, but rather expands it to include transfers of information from RNA to DNA.

Retroviral RT has three sequential biochemical activities: RNA-dependent DNA polymerase activity, ribonuclease H (RNase H), and DNA-dependent DNA polymerase activity. Collectively, these activities enable the enzyme to convert single-stranded RNA into double-stranded cDNA. In retroviruses and retrotransposons, this cDNA can then integrate into the host genome, from which new RNA copies can be made via host-cell transcription. The same sequence of reactions is widely used in the laboratory to convert RNA to DNA for use in molecular cloning, RNA sequencing, polymerase chain reaction (PCR), or genome analysis.

View the full Wikipedia page for Reverse transcription
↑ Return to Menu

DNA polymerase in the context of Proofreading (Biology)

The term proofreading is used in genetics to refer to the error-correcting processes, first proposed by John Hopfield and Jacques Ninio, involved in DNA replication, immune system specificity, and enzyme-substrate recognition among many other processes that require enhanced specificity. The kinetic proofreading mechanisms of Hopfield and Ninio are non-equilibrium active processes that consume ATP to enhance specificity of various biochemical reactions.

In bacteria, all three DNA polymerases (I, II and III) have the ability to proofread, using 3' → 5' exonuclease activity. When an incorrect base pair is recognized, DNA polymerase reverses its direction by one base pair of DNA and excises the mismatched base. Following base excision, the polymerase can re-insert the correct base and replication can continue.

View the full Wikipedia page for Proofreading (Biology)
↑ Return to Menu

DNA polymerase in the context of Replication slippage

Slipped strand mispairing (SSM, also known as replication slippage) is a mutation process which occurs during DNA replication. It involves denaturation and displacement of the DNA strands, resulting in mispairing of the complementary bases . Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences.

It is a form of mutation that leads to either a trinucleotide or dinucleotide expansion, or sometimes contraction, during DNA replication. A slippage event normally occurs when a sequence of repetitive nucleotides (tandem repeats) are found at the site of replication. Tandem repeats are unstable regions of the genome where frequent insertions and deletions of nucleotides can take place, resulting in genome rearrangements. DNA polymerase, the main enzyme to catalyze the polymerization of free deoxyribonucleotides into a newly forming DNA strand, plays a significant role in the occurrence of this mutation. When DNA polymerase encounters a direct repeat, it can undergo a replication slippage.

View the full Wikipedia page for Replication slippage
↑ Return to Menu

DNA polymerase in the context of Terminal deoxynucleotidyl transferase

Terminal deoxynucleotidyl transferase (TdT), also known as DNA nucleotidylexotransferase (DNTT) or terminal transferase, is a specialized DNA polymerase expressed in immature, pre-B, pre-T lymphoid cells, and acute lymphoblastic leukemia/lymphoma cells. TdT adds N-nucleotides to the V, D, and J exons of the TCR and BCR genes during antibody gene recombination, enabling the phenomenon of junctional diversity. In humans, terminal transferase is encoded by the DNTT gene. As a member of the X family of DNA polymerase enzymes, it works in conjunction with polymerase λ and polymerase μ, both of which belong to the same X family of polymerase enzymes. The diversity introduced by TdT has played an important role in the evolution of the vertebrate immune system, significantly increasing the variety of antigen receptors that a cell is equipped with to fight pathogens. Studies using TdT knockout mice have found drastic reductions (10-fold) in T-cell receptor (TCR) diversity compared with that of normal, or wild-type, systems. The greater diversity of TCRs that an organism is equipped with leads to greater resistance to infection. Although TdT was one of the first DNA polymerases identified in mammals in 1960, it remains one of the least understood of all DNA polymerases. In 2016–18, TdT was discovered to demonstrate in trans template dependant behaviour in addition to its more broadly known template independent behaviour

TdT is absent in fetal liver HSCs, significantly impairing junctional diversity in B-cells during the fetal period.

View the full Wikipedia page for Terminal deoxynucleotidyl transferase
↑ Return to Menu

DNA polymerase in the context of Varidnaviria

Varidnaviria is a realm of viruses that includes all DNA viruses that encode major capsid proteins that contain two vertical jelly roll folds. The major capsid proteins (MCP) form into pseudohexameric subunits of the viral capsid, which stores the viral deoxyribonucleic acid (DNA). The jelly roll folds are vertical, or perpendicular, to the surface of the capsid. Apart from the double jelly roll fold MCP (DJR-MCP), most viruses in the realm share many other characteristics, such as minor capsid proteins (mCP) that has one vertical jelly roll fold, an ATPase that packages viral DNA into the capsid, a DNA polymerase that replicates the viral genome, and capsids that are icosahedral in shape.

Varidnaviria was established in 2019 based on the shared characteristics of the viruses in the realm. There are two kingdoms in the realm: Abadenavirae, which contains all prokaryotic DJR-MCP viruses except tectiviruses, and Bamfordvirae which contains tectiviruses and all eukaryotic DJR-MCP viruses. The DJR-MCP of Varidnaviria is believed to share common ancestry with the DUF2961 family of proteins, which are widespread in cellular life and which are mainly involved in carbohydrate metabolism and binding. Up to 2025, the realm included viruses that have a vertical single jelly roll (SJR) fold in the MCP, but these viruses were moved to a separate realm, Singelaviria, after it was shown that the vertical SJR and DJR folds have separate evolutionary origins.

View the full Wikipedia page for Varidnaviria
↑ Return to Menu