DNA-binding protein in the context of Activator (genetics)


DNA-binding protein in the context of Activator (genetics)

DNA-binding protein Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about DNA-binding protein in the context of "Activator (genetics)"


⭐ Core Definition: DNA-binding protein

DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, because it exposes more functional groups that identify a base pair.

↓ Menu
HINT:

👉 DNA-binding protein in the context of Activator (genetics)

A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur. Most activators are DNA-binding proteins that bind to enhancers or promoter-proximal elements. The DNA site bound by the activator is referred to as an "activator-binding site". The part of the activator that makes protein–protein interactions with the general transcription machinery is referred to as an "activating region" or "activation domain".

Most activators function by binding sequence-specifically to a regulatory DNA site located near a promoter and making protein–protein interactions with the general transcription machinery (RNA polymerase and general transcription factors), thereby facilitating the binding of the general transcription machinery to the promoter. Other activators help promote gene transcription by triggering RNA polymerase to release from the promoter and proceed along the DNA. At times, RNA polymerase can pause shortly after leaving the promoter; activators also function to allow these "stalled" RNA polymerases to continue transcription.

↓ Explore More Topics
In this Dossier

DNA-binding protein in the context of SRY

Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein (also known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals (placentals and marsupials). SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development with varying effects on an individual's phenotype and genotype.

SRY is a member of the SOX (SRY-like box) gene family of DNA-binding proteins. When complexed with the steroidogenic factor 1 (SF-1) protein, SRY acts as a transcription factor that causes upregulation of other transcription factors, most importantly SOX9. Its expression causes the development of primary sex cords, which later develop into seminiferous tubules. These cords form in the central part of the yet-undifferentiated gonad, turning it into a testis. The now-induced Leydig cells of the testis then start secreting testosterone, while the Sertoli cells produce anti-Müllerian hormone. Effects of the SRY gene, which normally take place 6–8 weeks after fetus formation, inhibit the growth of female anatomical structure in males. The gene also contributes towards developing the secondary sexual characteristics of males.

View the full Wikipedia page for SRY
↑ Return to Menu

DNA-binding protein in the context of Repressor protein

In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to the promoter, thus preventing transcription of the genes into messenger RNA. An RNA-binding repressor binds to the mRNA and prevents translation of the mRNA into protein. This blocking or reducing of expression is called repression.

View the full Wikipedia page for Repressor protein
↑ Return to Menu

DNA-binding protein in the context of DNA binding site

DNA binding sites are a type of binding site found in DNA where other molecules may bind. DNA binding sites are distinct from other binding sites in that (1) they are part of a DNA sequence (e.g. a genome) and (2) they are bound by DNA-binding proteins. DNA binding sites are often associated with specialized proteins known as transcription factors, and are thus linked to transcriptional regulation. The sum of DNA binding sites of a specific transcription factor is referred to as its cistrome. DNA binding sites also encompasses the targets of other proteins, like restriction enzymes, site-specific recombinases (see site-specific recombination) and methyltransferases.

DNA binding sites can be thus defined as short DNA sequences (typically 4 to 30 base pairs long, but up to 200 bp for recombination sites) that are specifically bound by one or more DNA-binding proteins or protein complexes. It has been reported that some binding sites have potential to undergo fast evolutionary change.

View the full Wikipedia page for DNA binding site
↑ Return to Menu

DNA-binding protein in the context of Androgen receptor

The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.

The main function of the androgen receptor is as a DNA-binding transcription factor that regulates gene expression; however, the androgen receptor has other functions as well. Androgen-regulated genes are critical for the development and maintenance of the male sexual phenotype.

View the full Wikipedia page for Androgen receptor
↑ Return to Menu