Curie point in the context of "Gadolinium"

Play Trivia Questions online!

or

Skip to study material about Curie point in the context of "Gadolinium"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Curie point in the context of Gadolinium

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moisture slowly to form a black oxide coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare earths because of their similar chemical properties.

Gadolinium was discovered in 1880 by Jean Charles de Marignac, who detected its oxide by using spectroscopy. It is named after the mineral gadolinite, one of the minerals in which gadolinium is found, itself named for the Finnish chemist Johan Gadolin. Pure gadolinium was first isolated by the chemist Félix Trombe in 1935.

↓ Explore More Topics
In this Dossier

Curie point in the context of Potassium–argon dating

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on the measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar). Potassium is a common element in many materials, such as feldspars, micas, clay minerals, tephra, and evaporites. In these materials, the decay product
Ar
can escape the liquid (molten) rock but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the sample's purity, the composition of the mother material, and several other factors. These factors introduce error limits on the upper and lower bounds of dating so that the final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure or open air. Time since recrystallization is calculated by measuring the ratio of the amount of
Ar
accumulated to the amount of
K
remaining. The long half-life of
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.

The quickly cooled lavas that make nearly ideal samples for K–Ar dating also preserve a record of the direction and intensity of the local magnetic field as the sample cooled past the Curie temperature of iron. The geomagnetic polarity time scale was calibrated largely using K–Ar dating.

↑ Return to Menu