Crustaceans in the context of "Nauplius (larva)"

Play Trivia Questions online!

or

Skip to study material about Crustaceans in the context of "Nauplius (larva)"

Ad spacer

⭐ Core Definition: Crustaceans

Crustaceans (from Latin word "crustacea" meaning: "those with shells" or "crusted ones") are invertebrate animals that constitute one group of arthropods that are traditionally a part of the subphylum Crustacea (/krəˈstʃə/), a large, diverse group of mainly aquatic arthropods including the more familiar decapods (shrimps, prawns, crabs, lobsters and crayfish), seed shrimps, branchiopods, fish lice, krill, remipedes, isopods, barnacles, copepods, opossum shrimps, amphipods and mantis shrimp. The crustacean group can be treated as a subphylum under the clade Mandibulata. It is now well accepted that the hexapods (insects and entognathans) emerged deep in the crustacean group, with the completed pan-group referred to as Pancrustacea. The three classes Cephalocarida, Branchiopoda and Remipedia are more closely related to the hexapods than they are to any of the other crustaceans (oligostracans and multicrustaceans).

The 67,000 described species range in size from Stygotantulus stocki at 0.1 mm (0.004 in), to the Japanese spider crab with a leg span of up to 3.8 m (12.5 ft) and a mass of 20 kg (44 lb). Like other arthropods, crustaceans have an exoskeleton, which they moult to grow. They are distinguished from other groups of arthropods, such as insects, myriapods and chelicerates, by the possession of biramous (two-parted) limbs, and by their larval forms, such as the nauplius stage of branchiopods and copepods.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Crustaceans in the context of Entomology

Entomology, from Ancient Greek ἔντομον (éntomon), meaning "insect", and λόγος (lógos), meaning "study", is the branch of zoology that focuses on insects. Those who study entomology are known as entomologists. In the past, the term insect was less specific, and historically the definition of entomology would also include the study of animals in other arthropod groups, such as arachnids, myriapods, and crustaceans. The field is also referred to as insectology in American English, while in British English insectology implies the study of the relationships between insects and humans.

Over 1.3 million insect species have been described by entomology.

↑ Return to Menu

Crustaceans in the context of Lobster

Lobsters are malacostracan decapod crustaceans of the family Nephropidae or its synonym Homaridae. They have long bodies with muscular tails and live in crevices or burrows on the sea floor. Three of their five pairs of legs have claws, including the first pair, which are usually much larger than the others. Highly prized as seafood, lobsters are economically important and are often one of the most profitable commodities in the coastal areas they populate.

Commercially important species include two species of Homarus from the northern Atlantic Ocean and scampi (which look more like a shrimp, or a "mini lobster")—the Northern Hemisphere genus Nephrops and the Southern Hemisphere genus Metanephrops.

↑ Return to Menu

Crustaceans in the context of Ecdysozoa

Ecdysozoa (/ˌɛkdɪsˈzə/) is a group of protostome animals, including Arthropoda (insects, chelicerates (including arachnids), crustaceans, and myriapods), Nematoda, and several smaller phyla. The grouping of these animal phyla into a single clade was first proposed by Eernisse et al. (1992) based on a phylogenetic analysis of 141 morphological characters of ultrastructural and embryological phenotypes. This clade, that is, a group consisting of a common ancestor and all its descendants, was formally named by Aguinaldo et al. in 1997, based mainly on phylogenetic trees constructed using 18S ribosomal RNA genes.

A large study in 2008 by Dunn et al. strongly supported the monophyly of Ecdysozoa.

↑ Return to Menu

Crustaceans in the context of Fish hatchery

A fish hatchery is a place for artificial breeding, hatching, and rearing through the early life stages of animals—finfish and shellfish in particular. Hatcheries produce larval and juvenile fish, shellfish, and crustaceans, primarily to support the aquaculture industry where they are transferred to on-growing systems, such as fish farms, to reach harvest size. Some species that are commonly raised in hatcheries include Pacific oysters, shrimp, Indian prawns, salmon, tilapia and scallops.

The value of global aquaculture farming is estimated to be US$98.4 billion in 2008 with China significantly dominating the market; however, the value of aquaculture hatchery and nursery production has yet to be estimated. Additional hatchery production for small-scale domestic uses, which is particularly prevalent in South-East Asia or for conservation programmes, has also yet to be quantified.

↑ Return to Menu

Crustaceans in the context of Artificial fly

An artificial fly or fly lure is a type of fishing lure, usually used in the sport of fly fishing (although they may also be used in other forms of angling). In general, artificial flies are an imitation of aquatic insects that are natural food of the target fish species the fly fishers try to catch. Artificial flies are constructed by fly tying, in which furs, feathers, thread or any of very many other materials are tied onto a fish hook.

Artificial flies may be constructed to represent all manner of potential preys to freshwater and saltwater fish, including aquatic and terrestrial insects, crustaceans, worms, spawn, small baitfish, reptiles, amphibians, mammals and even birds. Effective artificial fly patterns are said to be killing flies because of their ability to put fish in the creel for the fly fisher. There are thousands of artificial fly patterns, many of them with descriptive and often idiosyncratic names.

↑ Return to Menu

Crustaceans in the context of ZW sex-determination system

The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects (including butterflies and moths), the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons. It is also present in some plants, where it has evolved independently on many occasions, characterizing at least 22% of plants with documented sex chromosomes. The letters Z and W are used to distinguish this system from the XY sex-determination system. In the ZW system, females have a pair of dissimilar ZW chromosomes, and males have two similar ZZ chromosomes.

In contrast to the XY sex-determination system and the X0 sex-determination system, where the sperm determines the sex, in the ZW system, the ovum determines the sex of the offspring. Males are the homogametic sex (ZZ), while females are the heterogametic sex (ZW). The Z chromosome is larger and has more genes, similarly to the X chromosome in the XY system.

↑ Return to Menu

Crustaceans in the context of Ommatidia

The compound eyes of arthropods like insects, crustaceans and millipedes are composed of units called ommatidia (sg.: ommatidium). An ommatidium contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The outer part of the ommatidium is overlaid with a transparent cornea. Each ommatidium is innervated by one axon bundle (usually consisting of 6–9 axons, depending on the number of rhabdomeres) and provides the brain with one picture element. The brain forms an image from these independent picture elements. The number of ommatidia in the eye depends upon the type of arthropod and range from as low as five as in the Antarctic isopod Glyptonotus antarcticus, or a handful in the primitive Zygentoma, to around 30,000 in larger Anisoptera dragonflies and some Sphingidae moths.

↑ Return to Menu

Crustaceans in the context of Bioerosion

Bioerosion describes the breakdown of hard ocean substrates – and less often terrestrial substrates – by living organisms. Marine bioerosion can be caused by mollusks, polychaete worms, phoronids, sponges, crustaceans, echinoids, and fish; it can occur on coastlines, on coral reefs, and on ships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed by pioneer plants or plant-like organisms such as lichen, and mostly chemical (e.g. by acidic secretions on limestone) or mechanical (e.g. by roots growing into cracks) in nature.

Bioerosion of coral reefs generates the fine and white coral sand characteristic of tropical islands. The coral is converted to sand by internal bioeroders such as algae, fungi, bacteria (microborers) and sponges (Clionaidae), bivalves (including Lithophaga), sipunculans, polychaetes, acrothoracican barnacles and phoronids, generating extremely fine sediment with diameters of 10 to 100 micrometres. External bioeroders include sea urchins (such as Diadema) and chitons. These forces in concert produce a great deal of erosion. Sea urchin erosion of calcium carbonate has been reported in some reefs at annual rates exceeding 20 kg/m.

↑ Return to Menu