Crown group in the context of "Salientia"

Play Trivia Questions online!

or

Skip to study material about Crown group in the context of "Salientia"

Ad spacer

⭐ Core Definition: Crown group

In phylogenetics, the crown group or crown assemblage is a collection of species composed of the living representatives of the collection, the most recent common ancestor of the collection, and all descendants of the most recent common ancestor. It is thus a way of defining a clade, a group consisting of a species and all its extant or extinct descendants. For example, Neornithes (birds) can be defined as a crown group, which includes the most recent common ancestor of all modern birds, and all of its extant or extinct descendants.

The concept was developed by Willi Hennig, the formulator of phylogenetic systematics, as a way of classifying living organisms relative to their extinct relatives in his "Die Stammesgeschichte der Insekten",and the "crown" and "stem" group terminology was coined by R. P. S. Jefferies in 1979. Though formulated in the 1970s, the term was not commonly used until its reintroduction in 2000 by Graham Budd and Sören Jensen.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Crown group in the context of Archosaur

Archosauria (lit.'ruling reptiles') or archosaurs (/ˈɑːrkəˌsɔːr/) is a clade of diapsid sauropsid tetrapods, with birds and crocodilians being the only known extant representatives. Although broadly classified as reptiles, which traditionally exclude birds, the cladistic sense of the term includes all living and extinct relatives of birds and crocodilians such as non-avian dinosaurs, pterosaurs, phytosaurs, aetosaurs and rauisuchians as well as many Mesozoic marine reptiles. Modern paleontologists define Archosauria as a crown group that includes the most recent common ancestor of living birds and crocodilians, and all of its descendants.

The base of Archosauria splits into two clades: Pseudosuchia, which includes crocodilians and their extinct relatives; and Avemetatarsalia, which includes birds and their extinct relatives (such as non-avian dinosaurs and pterosaurs). Older definitions of the group Archosauria rely on shared morphological characteristics, such as an antorbital fenestra in the skull, serrated teeth, and an upright stance. Some extinct reptiles, such as proterosuchids and euparkeriids, also possessed these features yet originated prior to the split between the crocodilian and bird lineages. The older morphological definition of Archosauria nowadays roughly corresponds to Archosauriformes, a group named to encompass crown-group archosaurs and their close relatives.

↑ Return to Menu

Crown group in the context of Crocodilia

Crocodilia (/krɒkəˈdɪliə/) is an order of semiaquatic, predatory reptiles that are known as crocodilians. They appeared 83.5 million years ago in the Late Cretaceous period (Campanian stage) and are the closest living relatives of birds, as the two groups are the only known survivors of the Archosauria. Members of the crocodilian total group, the clade Pseudosuchia, appeared about 250 million years ago in the Early Triassic period, and diversified during the Mesozoic era. The order includes the true crocodiles (family Crocodylidae), the alligators and caimans (family Alligatoridae), and the gharial and false gharial (family Gavialidae). Although the term "crocodiles" is sometimes used to refer to all of these families, the term "crocodilians" is less ambiguous.

Extant crocodilians have flat heads with long snouts and tails that are compressed on the sides, with their eyes, ears, and nostrils at the top of the head. Alligators and caimans tend to have broader U-shaped jaws that, when closed, show only the upper teeth, whereas crocodiles usually have narrower V-shaped jaws with both rows of teeth visible when closed. Gharials have extremely slender, elongated jaws. The teeth are conical and peg-like, and the bite is powerful. All crocodilians are good swimmers and can move on land in a "high walk" position, traveling with their legs erect rather than sprawling. Crocodilians have thick skin covered in non-overlapping scales and, like birds, have a four-chambered heart and lungs with unidirectional airflow.

↑ Return to Menu

Crown group in the context of Hexapoda

The subphylum Hexapoda (from Greek for 'six legs') or hexapods comprises the largest clade of arthropods and includes most of the extant arthropod species. It includes the crown group class Insecta (true insects), as well as the much smaller clade Entognatha, which includes three classes of wingless arthropods that were once considered insects: Collembola (springtails), Protura (coneheads) and Diplura (two-pronged bristletails). The insects and springtails are very abundant and are some of the most important pollinators, basal consumers, scavengers/detritivores and micropredators in terrestrial environments.

Hexapods are named for their most distinctive feature: a three-part body plan with a consolidated thorax and three pairs of legs. Most other arthropods have more than three pairs of legs. Most recent studies have recovered Hexapoda as a subgroup of Pancrustacea.

↑ Return to Menu

Crown group in the context of Tetrapod

A tetrapod (/ˈtɛtrəˌpɒd/; from Ancient Greek τετρα- (tetra-) 'four' and πούς (poús) 'foot') is any vertebrate animal of the clade Tetrapoda (/tɛˈtræpədə/). Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids (reptiles, including dinosaurs and therefore birds) and synapsids (extinct "pelycosaurs", therapsids and all extant mammals, including humans). Hox gene mutations have resulted in some tetrapods becoming limbless (snakes, legless lizards, and caecilians) or two-limbed (cetaceans, sirenians, some lizards, kiwis, and the extinct moa and elephant birds). Nevertheless, they still qualify as tetrapods through their ancestry, and some retain a pair of vestigial spurs that are remnants of the hindlimbs.

Tetrapods evolved from a group of semiaquatic animals within the tetrapodomorphs which, in turn, evolved from ancient lobe-finned fish (sarcopterygians) around 390 million years ago in the Middle Devonian period. Early tetrapodomorphs were transitional between lobe-finned fishes and true four-limbed tetrapods, though most still fit the body plan expected of other lobe-finned fishes. The oldest fossils of four-limbed vertebrates (tetrapods in the broad sense of the word) are trackways from the Middle Devonian, and body fossils became common near the end of the Late Devonian, around 370–360 million years ago. These Devonian species all belonged to the tetrapod stem group, meaning that they did not belong to any modern tetrapod group.

↑ Return to Menu

Crown group in the context of Last eukaryotic common ancestor

Eukaryogenesis, the process which created the eukaryotic cell and lineage, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The process is widely agreed to have involved symbiogenesis, in which an archaeon and one or more bacteria came together to create the first eukaryotic common ancestor (FECA). This cell had a new level of complexity and capability, with a nucleus, at least one centriole and cilium, facultatively aerobic mitochondria, sex (meiosis and syngamy), a dormant cyst with a cell wall of chitin and/or cellulose and peroxisomes. It evolved into a population of single-celled organisms that included the last eukaryotic common ancestor (LECA), gaining capabilities along the way, though the sequence of steps involved has been disputed, and may not have started with symbiogenesis. In turn, the LECA gave rise to the eukaryotes' crown group, containing the ancestors of animals, fungi, plants, and a diverse range of single-celled organisms.

↑ Return to Menu

Crown group in the context of Caecilian

Caecilians (/sɪˈsɪliən/; New Latin for 'blind ones') are a group of limbless, worm-shaped or snake-shaped amphibians, with either small eyes or no eyes, comprising the order Gymnophiona. They mostly live hidden in soil or in streambeds, making them some of the least familiar amphibians. Modern caecilians live in the tropics of South and Central America, Africa, and southern Asia. Caecilians feed on small subterranean creatures, such as earthworms. The body is noodle-like and often dark in colour, and the skull is bullet-shaped and strongly built. Caecilian heads have several unique adaptations, such as fused skull and jaw bones, a two-part system of jaw muscles, and chemosensory tentacles between the eyes and nostrils. The skin is slimy, with ringlike markings or grooves, and in some species hides scales underneath.

Modern caecilians are a clade, the order Gymnophiona /ˌɪmnəˈfənə/ (or Apoda /ˈæpədə/), one of the three living amphibian groups alongside Anura (frogs) and Urodela (salamanders). Gymnophiona is a crown group, encompassing all modern caecilians and all descendants of their last common ancestor. There are more than 220 living species of caecilian classified in 10 families. Gymnophionomorpha is a recently coined name for the corresponding total group which includes Gymnophiona as well as a few extinct stem-group caecilians (extinct amphibians whose closest living relatives are caecilians but are not descended from any caecilian). Some palaeontologists have used the name Gymnophiona for the total group and the old name Apoda for the crown group. However, Apoda has other even older uses, including as the name of a genus of butterfly, making its use potentially confusing and best avoided. The clade's name 'Gymnophiona' comes from Ancient Greek γυμνος (gumnos), meaning "naked", and ὄφις (óphis), meaning "snake", as the caecilians were originally thought to be related to snakes and to lack scales.

↑ Return to Menu