Head-mounted display in the context of "Virtual reality"

⭐ In the context of virtual reality, what primary function do head-mounted displays serve within a standard VR system?

Ad spacer

⭐ Core Definition: Head-mounted display

A head-mounted display (HMD) is a display device, worn on the head or as part of a helmet (see helmet-mounted display for aviation applications), that has a small display optic in front of one (monocular HMD) or each eye (binocular HMD). HMDs have many uses including gaming, aviation, engineering, and medicine.

Virtual reality headsets are a type of HMD that track 3D position and rotation to provide a virtual environment to the user. 3DOF VR headsets typically use an IMU for tracking. 6DOF VR headsets typically use sensor fusion from multiple data sources including at least one IMU.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Head-mounted display in the context of Virtual reality

Virtual reality (VR) is a simulated experience that employs 3D near-eye displays and pose tracking to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), education (such as medical, safety, or military training), research and business (such as virtual meetings). VR is one of the key technologies in the reality-virtuality continuum. As such, it is different from other digital visualization solutions, such as augmented virtuality and augmented reality.

Currently, standard virtual reality systems use either virtual reality headsets or multi-projected environments to generate some realistic images, sounds, and other sensations that simulate a user's physical presence in a virtual environment. A person using virtual reality equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. The effect is commonly created by VR headsets consisting of a head-mounted display with a small screen in front of the eyes but can also be created through specially designed rooms with multiple large screens. Virtual reality typically incorporates auditory and video feedback but may also allow other types of sensory and force feedback through haptic technology.

↓ Explore More Topics
In this Dossier

Head-mounted display in the context of Virtual reality headset

A virtual reality headset (VR headset) is a head-mounted device that uses 3D near-eye displays and positional tracking to provide a virtual reality environment for the user. VR headsets are widely used with VR video games, but they are also used in other applications, including simulators and trainers. VR headsets typically include a stereoscopic display (providing separate images for each eye), stereo sound, and sensors like accelerometers and gyroscopes for tracking the pose of the user's head to match the orientation of the virtual camera with the user's eye positions in the real world. Mixed reality (MR) headsets are VR headsets that enable the user to see and interact with the outside world. Examples of MR headsets include the Apple Vision Pro and Meta Quest 3.

VR headsets typically use at least one MEMS IMU for three degrees of freedom (3DOF) motion tracking, and optionally more tracking technology for six degrees of freedom (6DOF) motion tracking. 6DOF devices typically use a sensor fusion algorithm to merge the data from the IMU and any other tracking sources, typically either one or more external sensors, or "inside-out" tracking using outward facing cameras embedded in the headset. The sensor fusion algorithms that are used are often variants of a Kalman filter. VR headsets can support motion controllers, which similarly combine inputs from accelerometers and gyroscopes with the headset's motion tracking system.

↑ Return to Menu

Head-mounted display in the context of Augmented virtuality

Augmented reality (AR), also known as mixed reality (MR), is a technology that overlays real-time 3D-rendered computer graphics onto a portion of the real world through a display, such as a handheld device or head-mounted display. This experience is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment. In this way, augmented reality alters one's ongoing perception of a real-world environment, compared to virtual reality, which aims to completely replace the user's real-world environment with a simulated one. Augmented reality is typically visual, but can span multiple sensory modalities, including auditory, haptic, and somatosensory.

The primary value of augmented reality is the manner in which components of a digital world blend into a person's perception of the real world, through the integration of immersive sensations, which are perceived as real in the user's environment. The earliest functional AR systems that provided immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992. Commercial augmented reality experiences were first introduced in entertainment and gaming businesses. Subsequently, augmented reality applications have spanned industries such as education, communications, medicine, and entertainment.

↑ Return to Menu

Head-mounted display in the context of Drone racing

Drone racing is a motorsport where participants operate radio-controlled aircraft (typically small quadcopter drones) equipped with onboard digital video cameras, with the operator looking at a compact flat panel display (typically mounted to the handheld controller) or, more often, wearing a head-mounted display (also called a "FPV goggle") showing live-streamed image feed from the aircraft. Similar to full-size air racing, the goal of the sport is to complete an obstacle course as quickly as possible. Drone racing began in 2011 in Germany with a number of amateur drone controllers getting together for semi-organized races in Karlsruhe.

↑ Return to Menu